868 resultados para Bifurcation de Hopf


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous développons ainsi deux mécanismes permettant de conclure qu’un point singulier monodromique dans ce système non-linéaire polynomial est un centre. Le premier mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques invariantes dans la construction d’une intégrale première. La deuxième méthode analyse la réversibilité algébrique ou analytique du système. Un système possédant une singularité monodromique et étant algébriquement ou analytiquement réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss généralisé avec récolte de proies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A low-dimensional Galerkin method, initiated by Noack and Eckelmann [Physica D 56, 151 (1992)], for the prediction of the flow field around a stationary two-dimensional circular cylinder in a uniform stream at low Reynolds number is generalized to the case of a rotating and translating cylinder. The Hopf bifurcation describing the transition from steady to time-periodic solution is investigated. A curve indicating the transitional boundary is given in the two-dimensional parameter plane of Reynolds number Re and rotating parameter alpha. Our results show that rotation may delay the onset of vortex street and decrease the vortex-shedding frequency. (C) 1996 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis we have presented some aspects of the nonlinear dynamics of Nd:YAG lasers including synchronization, Hopf bifurcation, chaos control and delay induced multistability.We have chosen diode pumped Nd:YAG laser with intracavity KTP crystal operating with two mode and three mode output as our model system.Different types of orientation for the laser cavity modes were considered to carry out the studies. For laser operating with two mode output we have chosen the modes as having parallel polarization and perpendicular polarization. For laser having three mode output, we have chosen them as two modes polarized parallel to each other while the third mode polarized orthogonal to them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamics of Nd:YAG laser with intracavity KTP crystal operating in two parallel polarized modes is investigated analytically and numerically. System equilibrium points were found out and the stability of each of them was checked using Routh–Hurwitz criteria and also by calculating the eigen values of the Jacobian. It is found that the system possesses three equilibrium points for (Ij, Gj), where j = 1, 2. One of these equilibrium points undergoes Hopf bifurcation in output dynamics as the control parameter is increased. The other two remain unstable throughout the entire region of the parameter space. Our numerical analysis of the Hopf bifurcation phenomena is found to be in good agreement with the analytical results. Nature of energy transfer between the two modes is also studied numerically.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the experimental observation of subcritical Hopf bifurcation and the existence of non-oscillating “windows” in the dynamics of a Ne-Nd hollow cathode discharge current as the control parameter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we study the Lyapunov stability and the Hopf bifurcation in a system coupling an hexagonal centrifugal governor with a steam engine. Here are given sufficient conditions for the stability of the equilibrium state and of the bifurcating periodic orbit. These conditions are expressed in terms of the physical parameters of the system, and hold for parameters outside a variety of codimension two. (C) 2007 Elsevier Ltd. All rights reserved.