944 resultados para Basic dyes


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This research work has been focused in the study of gallinaceous feathers, a waste that may be valorised as sorbent, to remove the Dark Blue Astrazon 2RN (DBA) from Dystar. This study was focused on the following aspects: optimization of experimental conditions through factorial design methodology, kinetic studies into a continuous stirred tank adsorber (at pH 7 and 20ºC), equilibrium isotherms (at pH 5, 7 and 9 at 20 and 45ºC) and column studies (at 20ºC, at pH 5, 7 and 9). In order to evaluate the influence of the presence of other components in the sorption of the dyestuff, all experiments were performed both for the dyestuff in aqueous solution and in real textile effluent. The pseudo-first and pseudo-second order kinetic models were fitted to the experimental data, being the latter the best fit for the aqueous solution of dyestuff. For the real effluent both models fit the experimental results and there is no statistical difference between them. The Central Composite Design (CCD) was used to evaluate the effects of temperature (15 - 45ºC) and pH (5 - 9) over the sorption in aqueous solution. The influence of pH was more significant than temperature. The optimal conditions selected were 45ºC and pH 9. Both Langmuir and Freundlich models could fit the equilibrium data. In the concentration range studied, the highest sorbent capacity was obtained for the optimal conditions in aqueous solution, which corresponds to a maximum capacity of 47± 4 mg g-1. The Yoon-Nelson, Thomas and Yan’s models fitted well the column experimental data. The highest breakthrough time for 50% removal, 170 min, was obtained at pH 9 in aqueous solution. The presence of the dyeing agents in the real wastewater decreased the sorption of the dyestuff mostly for pH 9, which is the optimal pH. The effect of pH is less pronounced in the real effluent than in aqueous solution. This work shows that feathers can be used as sorbent in the treatment of textile wastewaters containing DBA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado Engenharia Química. Ramo Tecnologias de Protecção Ambiental

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initiation step of the light-induced polymerization kinetics of vinyl monomers using dye-sensitized photoinitiators to generate active radicals is discussed. The photoredox processes of basic dyes with amines and sulfinates are described as photochemical systems capable of starting free-radical polymerization of vinyl monomers in homogeneous and microheterogeneous media. Photophysical techniques like laser flash photolysis and time-correlated single photon counting are used to investigate the excited-state kinetics of the dyes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On a laboratory scale effluents were produced from bichromic dyeing of acrylic fabrics with the basic dyes Blue Astrazon FGGL 300% and Yellow Gold Astrazon GL 200%. The residual dyeing baths were subjected to a photoelectrochemical treatment and reused in a second dyeing process. In the reutilization study, dyeings with treated effluent were compared with standard dyeings with distilled water. The results of dyeings using 100% of treated effluent were unsatisfactory, but the substitution of 10 to 30% of the treated effluent by distilled water resulted in reduced and more acceptable values for difference in colour intensity (ΔE) between 1.86 and 0.3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper describes the synthesis and characterization by dynamic light scattering, X-ray diffraction, scanning electron microscopy and atomic force microscopy of Laponite RD/Sodium polystyrenesulfonate nanocomposites obtained by radical photopolymerization initiated by the cationic dye safranine. The presence of the clay mineral does not affect the hydrotropic aggregation of the monomers, but allows a better deaggregation of the initiator molecules, decreasing the quenching of the excited states that leads to the radicals that initiate polymerization. Increasing the amount of clay mineral loading in the polymerization mixture promotes higher monomer conversion and faster polymerization. The size of the nanocomposite particles, measured by light scattering decreases from 400 to 80 nm for clay mineral loadings of 1.0 wt.%. The X-ray diffraction patterns indicate that the clay mineral does not present a regular crystalline structure in the nanocomposite. Atomic force microscopy studies show films of sodium polystyrenesulfonate polymer with embedded Laponite platelets in its structure, forming 1-8 nm height and 25-100 nm diameter aggregates. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports on the effect of sonication on SAz-1 and SWy-1 montmorillonite suspensions. Changes in the size of the particles of these materials and modifications of their properties have been investigated. The variation of the particle size has been analyzed by DLS (dynamic light scattering). In all cases the clay particles show a bimodal distribution. Sonication resulted in a decrease of the larger modal diameter, as well as a reduction of its volume percentage. Simultaneously, the proportion of the smallest particles increases. After 60 min of sonication, SAz-1 presented a very broad particle size distribution with a modal diameter of 283 nm. On the other hand, the SWy-1 sonicated for 60 min presents a bimodal distribution of particles at 140 and 454 nm. Changes in the properties of the clay suspensions due to sonication were evaluated spectroscopically from dye-clay interactions, using Methylene Blue. The acidic sites present in the interlamellar region, which are responsible for dye protonation, disappeared after sonication of the clay. The changes in the size of the scattering particles and the lack of acidic sites after sonication suggest that sonication induces delamination of the clay particles. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a previous work, succinylated sugarcane bagasse (SCB 2) was prepared from sugarcane bagasse (B) using succinic anhydride as modifying agent. In this work the adsorption of cationic dyes onto SCB 2 from aqueous solutions was investigated. Methylene blue, MB, and gentian violet, GV, were selected as adsorbates. The capacity of SCB 2 to adsorb MB and GV from aqueous single dye solutions was evaluated at different contact times, pH, and initial adsorbent concentration. According to the obtained results, the adsorption processes could be described by the pseudo-second-order kinetic model. Adsorption isotherms were well fitted by Langmuir model. Maximum adsorption capacities for MB and GV onto SCB 2 were found to be 478.5 and 1273.2 mg/g, respectively. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 121 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prepared a W/WO3/TiO2 bicomposite photoanode by simple electrochemical anodization of W foil, followed by cathodic electrodeposition of TiO2 and annealing at 450 C for 30 min. This photoanode shows good photoactivity under irradiation with UV and visible light. In optimized conditions, it promotes complete photoelectrocatalytic oxidation of 3.33 × 10-5 mol L-1 basic red 51 solution (which is used in hair dye) at 0.1 mol L-1 Na2SO4, pH 2.0, under a current density of 1.25 mA cm-2 and ultraviolet and visible radiation-total organic carbon removal is 94 and 88%, respectively. This effect paves the way for the sustainable solar-assisted remediation of water bodies contaminated with organic components of hair dyes. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the International Agency for Research on Cancer (IARC), some hair dyes are considered mutagenic and carcinogenic in in vitro assays and exposed human populations. Epidemiological studies indicate that hairdressers occupationally exposed to hair dyes have a higher risk of developing bladder cancer. In Brazil, 26% of the adults use hair dye. In this study, we investigated the toxic effects of two hair dyes, Basic Red 51 (BR51) and Basic Brown 17 (BB17), which are temporary dyes of the azo group (R-N=N-R'), used in the composition of the black hair dye. To this end, MTT and trypan blue assays (cytotoxicity), comet and micronucleus assay (genotoxicity) were applied, with HepG2 cells. For cytotoxic assessment, dyes were tested in serial dilutions, being the highest concentrations those used in the commercial formula for hair dyes. For genotoxic assessment concentrations were selected according to cell viability. Results showed that both dyes induced significant cytotoxic and genotoxic effects in the cells, in concentrations much lower than those used in the commercial formula. Genotoxic effects could be related to the azo structure present in the composition of the dyes, which is known as mutagenic and carcinogenic. These results point to the hazard of the hair dye exposure to human health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of this thesis was to gain further understanding of the non-enzymatic mechanisms involved in brown-rot wood decay, especially the role of pH, oxalic acid, and low molecular catecholate compounds on the dissolution and reduction of iron, and the formation of reactive oxygen species. Another focus of this study will be the potential application of a biomimetic free radical generating system inspired from fungi wood decay process, especially the non-enzymatic mechanism. The possible pathways of iron uptake and iron redox cycling in non-enzymatic brown-rot decay were investigated in this study. UV-Vis spectroscopy and HPLC were employed to study the kinetics and pathways of the interaction between iron and model catecholate compounds under different pH and chelator/iron molar ratio conditions. Iron chelation and reduction during early non-enzymatic wood decay processes have been studied in this thesis. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on the hydroxyl radical generation in a Fenton type system can be determined using ESR spin-trapping techniques. Data also support the hypothesis that superoxide radicals are involved in chelator-mediated Fenton processes. The mechanisms involved in free radical activation of Thermal Mechanical Pulp fibers were investigated. The activation of TMP fibers was evaluated by ESR measurement of free phenoxy radical generation on solid fibers. The results indicate that low molecular weight chelators can improve Fenton reactions, thus in turn stimulating the free radical activation of TMP fibers. A mediated Fenton system was evaluated for decolorization of several types of dyes. The result shows that the Fenton system mediated by a catecholate-type chelator effectively reduced the color of a diluted solution of synthetic dyes after 90 minutes of treatment at room temperature. The results show that compared to a neat Fenton process, the mediated Fenton decolorization process increased the production, and therefore the effective longevity, of hydroxyl radical species to increase the decolorization efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colored wastewater poses a challenge to the conventional wastewater treatment techniques. Solid-liquid phase adsorption has been found to be effective for the removal of dyes from effluent. In this paper, the ability of bentonite as an adsorbent for the removal of a commercial dye, Basic Red 2 (BR2), from an aqueous solution has been investigated under various experimental conditions. The adsorption kinetics was shown to be pseudo-second-order. It was found that bentonite had high adsorption capacity for BR2 due to cation exchange. The adsorption equilibrium data can be fitted well by the Langmuir adsorption isotherm model. The effect of the experimental parameters, such as temperature, salt, and pH was investigated through a number of batch adsorption experiments. It was found that the removal of dye increased with the increase in solution pH. However, the change of temperature (15-45 degrees C) and the addition of sodium chloride were found to have little effect on the adsorption process. The results show that electrostatic interactions are not dominant in the interaction between BR2 and bentonite. It was found that the adsorption was a rapid process with 80-90% of the dye removed within the first 2-3 min. Bentonite as an adsorbent is promising for color removal from wastewater.