867 resultados para Bankruptcy prediction methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to examine the impact of the choice of cut-off points, sampling procedures, and the business cycle on the accuracy of bankruptcy prediction models. Misclassification can result in erroneous predictions leading to prohibitive costs to firms, investors and the economy. To test the impact of the choice of cut-off points and sampling procedures, three bankruptcy prediction models are assessed- Bayesian, Hazard and Mixed Logit. A salient feature of the study is that the analysis includes both parametric and nonparametric bankruptcy prediction models. A sample of firms from Lynn M. LoPucki Bankruptcy Research Database in the U. S. was used to evaluate the relative performance of the three models. The choice of a cut-off point and sampling procedures were found to affect the rankings of the various models. In general, the results indicate that the empirical cut-off point estimated from the training sample resulted in the lowest misclassification costs for all three models. Although the Hazard and Mixed Logit models resulted in lower costs of misclassification in the randomly selected samples, the Mixed Logit model did not perform as well across varying business-cycles. In general, the Hazard model has the highest predictive power. However, the higher predictive power of the Bayesian model, when the ratio of the cost of Type I errors to the cost of Type II errors is high, is relatively consistent across all sampling methods. Such an advantage of the Bayesian model may make it more attractive in the current economic environment. This study extends recent research comparing the performance of bankruptcy prediction models by identifying under what conditions a model performs better. It also allays a range of user groups, including auditors, shareholders, employees, suppliers, rating agencies, and creditors' concerns with respect to assessing failure risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early models of bankruptcy prediction employed financial ratios drawn from pre-bankruptcy financial statements and performed well both in-sample and out-of-sample. Since then there has been an ongoing effort in the literature to develop models with even greater predictive performance. A significant innovation in the literature was the introduction into bankruptcy prediction models of capital market data such as excess stock returns and stock return volatility, along with the application of the Black–Scholes–Merton option-pricing model. In this note, we test five key bankruptcy models from the literature using an upto- date data set and find that they each contain unique information regarding the probability of bankruptcy but that their performance varies over time. We build a new model comprising key variables from each of the five models and add a new variable that proxies for the degree of diversification within the firm. The degree of diversification is shown to be negatively associated with the risk of bankruptcy. This more general model outperforms the existing models in a variety of in-sample and out-of-sample tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein–ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein–ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein–ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membrane proteins are a large and important class of proteins. They are responsible for several of the key functions in a living cell, e.g. transport of nutrients and ions, cell-cell signaling, and cell-cell adhesion. Despite their importance it has not been possible to study their structure and organization in much detail because of the difficulty to obtain 3D structures. In this thesis theoretical studies of membrane protein sequences and structures have been carried out by analyzing existing experimental data. The data comes from several sources including sequence databases, genome sequencing projects, and 3D structures. Prediction of the membrane spanning regions by hydrophobicity analysis is a key technique used in several of the studies. A novel method for this is also presented and compared to other methods. The primary questions addressed in the thesis are: What properties are common to all membrane proteins? What is the overall architecture of a membrane protein? What properties govern the integration into the membrane? How many membrane proteins are there and how are they distributed in different organisms? Several of the findings have now been backed up by experiments. An analysis of the large family of G-protein coupled receptors pinpoints differences in length and amino acid composition of loops between proteins with and without a signal peptide and also differences between extra- and intracellular loops. Known 3D structures of membrane proteins have been studied in terms of hydrophobicity, distribution of secondary structure and amino acid types, position specific residue variability, and differences between loops and membrane spanning regions. An analysis of several fully and partially sequenced genomes from eukaryotes, prokaryotes, and archaea has been carried out. Several differences in the membrane protein content between organisms were found, the most important being the total number of membrane proteins and the distribution of membrane proteins with a given number of transmembrane segments. Of the properties that were found to be similar in all organisms, the most obvious is the bias in the distribution of positive charges between the extra- and intracellular loops. Finally, an analysis of homologues to membrane proteins with known topology uncovered two related, multi-spanning proteins with opposite predicted orientations. The predicted topologies were verified experimentally, providing a first example of "divergent topology evolution".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patent and trademark offices which run according to principles of new management have an inherent need for dependable forecasting data in planning capacity and service levels. The ability of the Spanish Office of Patents and Trademarks to carry out efficient planning of its resource needs requires the use of methods which allow it to predict the changes in the number of patent and trademark applications at different time horizons. The approach for the prediction of time series of Spanish patents and trademarks applications (1979e2009) was based on the use of different techniques of time series prediction in a short-term horizon. The methods used can be grouped into two specifics areas: regression models of trends and time series models. The results of this study show that it is possible to model the series of patents and trademarks applications with different models, especially ARIMA, with satisfactory model adjustment and relatively low error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the decade of the 1980’s the literature on economic development began paying attention to the cases of countries which were industrialized after the first industrial revolution. One of the most relevant aspects analyzed has been the role of technology as a factor which promotes or delays the process of catching up with technology leaders. As result of this interest, new and more adequate indicators were identified to provide a coherent explanation for technological activities and their relationship with economic efficiency. Although the earliest studies focused on analyzing the activities of research and development (R&D), recently the focus of analysis has shifted to another type of variables, more oriented towards the processes of innovation and the gathering of knowledge and capabilities, in which patents provide relevant information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The article attempts to answer the question whether or not the latest bankruptcy prediction techniques are more reliable than traditional mathematical–statistical ones in Hungary. Simulation experiments carried out on the database of the first Hungarian bankruptcy prediction model clearly prove that bankruptcy models built using artificial neural networks have higher classification accuracy than models created in the 1990s based on discriminant analysis and logistic regression analysis. The article presents the main results, analyses the reasons for the differences and presents constructive proposals concerning the further development of Hungarian bankruptcy prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bankruptcy prediction has been a fruitful area of research. Univariate analysis and discriminant analysis were the first methodologies used. While they perform relatively well at correctly classifying bankrupt and nonbankrupt firms, their predictive ability has come into question over time. Univariate analysis lacks the big picture that financial distress entails. Multivariate discriminant analysis requires stringent assumptions that are violated when dealing with accounting ratios and market variables. This has led to the use of more complex models such as neural networks. While the accuracy of the predictions has improved with the use of more technical models, there is still an important point missing. Accounting ratios are the usual discriminating variables used in bankruptcy prediction. However, accounting ratios are backward-looking variables. At best, they are a current snapshot of the firm. Market variables are forward-looking variables. They are determined by discounting future outcomes. Microstructure variables, such as the bid-ask spread, also contain important information. Insiders are privy to more information that the retail investor, so if any financial distress is looming, the insiders should know before the general public. Therefore, any model in bankruptcy prediction should include market and microstructure variables. That is the focus of this dissertation. The traditional models and the newer, more technical models were tested and compared to the previous literature by employing accounting ratios, market variables, and microstructure variables. Our findings suggest that the more technical models are preferable, and that a mix of accounting and market variables are best at correctly classifying and predicting bankrupt firms. Multi-layer perceptron appears to be the most accurate model following the results. The set of best discriminating variables includes price, standard deviation of price, the bid-ask spread, net income to sale, working capital to total assets, and current liabilities to total assets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Auditoria