996 resultados para Bacterial parameters


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The principal interest of the present investigation was to determine seasonal and vertical variation of chemoorganotrophic utilisation of glucose and sodium—acetate by the natural bacterial population in the aquaculture pond of Narakkal, Cochin using techniques which allow maintenance of the in situ gaseous concentrations during incubation. In addition salinity, dissolved oxygen, temperature, hydrogen—ion—.concentration, primary production, plant pigments and total bacterial concentration were determined seasonally and vertically because of their possible relationship to chemoorganotrophy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bacterial abundance, bacterial secondary production (BSP) and potential ectoproteolytic activity (PEA) were measured at 6 stations along the Strait of Magellan, South America, toward the end of summer 1995. Because of hydrological and climatic factors, 3 main areas could be identified in which the bacterial component displayed specific characteristics. In the Pacific Ocean side, subjected to freshwater inputs from rainfalls and melting of glaciers, the bacterial activities showed the highest values (BSP: 228.2 ng C/l h; PEA: 12.2 nmol/l h). The bacterial biomass was greater than the phytoplanktonic biomass, probably due to organic inputs from land stimulating the bacterial growth. The central part of the Strait demonstrated the lowest values (BSP: 32.6 ng C/l h, PEA: 4.6 nmol/l h), although the ratio of bacterial biomass to phytoplanktonic biomass was greater than 1. In the third area, the Atlantic Ocean opening, subjected to strong tidal currents, BSP and PEA displayed high values, 80 to 88.7 ng C/l h and 11.7 nmol/l h respectively. Nevertheless, the ratio of bacterial to phytoplanktonic biomass was less than 1, like in eutrophic areas. On the other hand, no impact of the tide was noted on bacterial parameters. Considering all samples measured in the 0 to 50 m layer, although BSP and PEA were positively correlated with bacterial abundance, the PEA to BSP ratio was negatively correlated with the bacterial biomass (r = -0.72, p < 0.001, n = 22). This ratio could be an indicator of trophic conditions in the 3 subsystems of the Strait.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND There is confusion over the definition of the term "viability state(s)" of microorganisms. "Viability staining" or "vital staining techniques" are used to distinguish live from dead bacteria. These stainings, first established on planctonic bacteria, may have serious shortcomings when applied to multispecies biofilms. Results of staining techniques should be compared with appropriate microbiological data. DISCUSSION Many terms describe "vitality states" of microorganisms, however, several of them are misleading. Authors define "viable" as "capable to grow". Accordingly, staining methods are substitutes, since no staining can prove viability.The reliability of a commercial "viability" staining assay (Molecular Probes) is discussed based on the corresponding product information sheet: (I) Staining principle; (II) Concentrations of bacteria; (III) Calculation of live/dead proportions in vitro. Results of the "viability" kit are dependent on the stains' concentration and on their relation to the number of bacteria in the test. Generally this staining system is not suitable for multispecies biofilms, thus incorrect statements have been published by users of this technique.To compare the results of the staining with bacterial parameters appropriate techniques should be selected. The assessment of Colony Forming Units is insufficient, rather the calculation of Plating Efficiency is necessary. Vital fluorescence staining with Fluorescein Diacetate and Ethidium Bromide seems to be the best proven and suitable method in biofilm research.Regarding the mutagenicity of staining components users should be aware that not only Ethidium Bromide might be harmful, but also a variety of other substances of which the toxicity and mutagenicity is not reported. SUMMARY - The nomenclature regarding "viability" and "vitality" should be used carefully.- The manual of the commercial "viability" kit itself points out that the kit is not suitable for natural multispecies biofilm research, as supported by an array of literature.- Results obtained with various stains are influenced by the relationship between bacterial counts and the amount of stain used in the test. Corresponding vitality data are prone to artificial shifting.- As microbiological parameter the Plating Efficiency should be used for comparison.- Ethidium Bromide is mutagenic. Researchers should be aware that alternative staining compounds may also be or even are mutagenic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cellulose can be obtained from innumerable sources such as cotton, trees, sugar cane bagasse, wood, bacteria, and others. The bacterial cellulose (BC) produced by the Gram-negative acetic-acid bacterium Acetobacter xylinum has several unique properties. This BC is produced as highly hydrated membranes free of lignin and hemicelluloses and has a higher molecular weight and higher crystallinity. Here, the thermal behavior of BC, was compared with those of microcrystalline (MMC) and vegetal cellulose (VC). The kinetic parameters for the thermal decomposition step of the celluloses were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and at heating rates of 5, 10, and 20 A degrees C/min, the E(alpha) and B(alpha) terms could be determined and consequently the pre-exponential factor A(alpha) as well as the kinetic model g(alpha). The pyrolysis of celluloses followed kinetic model g(alpha) = [-ln(1 - alpha)](1.63) on average, characteristic for Avrami-Erofeev with only small differences in activation energy. The fractional value of n may be related to diffusion-controlled growth, or may arise from the distributions of sizes or shapes of the reactant particles.