998 resultados para BRAIN MORPHOLOGY
Resumo:
An abnormality in neurodevelopment is one of the most robust etiologic hypotheses in schizophrenia (SZ). There is also strong evidence that genetic factors may influence abnormal neurodevelopment in the disease. The present study evaluated in SZ patients, whose brain structural data had been obtained with magnetic resonance imaging (MRI), the possible association between structural brain measures, and 32 DNA polymorphisms,located in 30 genes related to neurogenesis and brain development. DNA was extracted from peripheral blood cells of 25 patients with schizophrenia, genotyping was performed using diverse procedures, and putative associations were evaluated by standard statistical methods (using the software Statistical Package for Social Sciences - SPSS) with a modified Bonferroni adjustment. For reelin (RELN), a protease that guides neurons in the developing brain and underlies neurotransmission and synaptic plasticity in adults, an association was found for a non-synonymous polymorphism (Va1997Leu) with left and right ventricular enlargement. A putative association was also found between protocadherin 12 (PCDH12), a cell adhesion molecule involved in axonal guidance and synaptic specificity, and cortical folding (asymmetry coefficient of gyrification index). Although our results are preliminary, due to the small number of individuals analyzed, such an approach could reveal new candidate genes implicated in anomalous neurodevelopment in schizophrenia. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.
Resumo:
Somatization was described 4000 years ago but the pathophysiology of the, phenomenon is unknown. The aim of this investigation was to explore whether central nervous system (CNS) pathology is associated with severe somatization which was operationalized as somatization disorder (SD) and undifferentiated somatoform disorder. The study sample consisted of severely somatizing people who were included into the study after a multi-phase screening procedure in order to exclude psychiatric comorbidities and physical illnesses. Diagnosis of somatization disorder or undifferentiated sofatoform disorder were set according to Diagnostic and Statistical Manual of Mental Disorders 4th ed. (DSM-IV). The first study explored the regional cerebral metabolic rate of glucose (rCMRGlc) in severely somatizing females and found it to be reduced in several regions of the brain compared to healthy controls. The second study observed brain morphology with magnetic resonance imaging (MRI) based on the findings from the first study and showed enlarged caudate nuclei in somatizing women compared to healthy volunteers. The third study investigated temperament factors and brain metabolism, and their association with severe somatization. Low caudate and putamen metabolism, low novelty seeking as well as high harm avoidance were found to be associated with severe somatization in women, reduced caudate metabolism having the strongest association. The last study is a report of man with left-side gradient of multiple symptoms of unknown origin in the body. The examination revealed a hypermetabolic nucleus putamen on the contralateral side. All the main results reported in these four articles are original findings. The results suggest that CNS pathology is involved in the pathophysiology of severe somatization.
Resumo:
The free-living amoeba Naegleria fowleri is the aetiological agent of primary amoebic meningoencephalitis (PAM), a disease leading to death in the vast majority of cases. In patients suffering from PAM, and in corresponding animal models, the brain undergoes a massive inflammatory response, followed by haemorrhage and severe tissue necrosis. Both, in vivo and in vitro models are currently being used to study PAM infection. However, animal models may pose ethical issues, are dependent upon availability of specific infrastructural facilities, and are time-consuming and costly. Conversely, cell cultures lack the complex organ-specific morphology found in vivo, and thus, findings obtained in vitro do not necessarily reflect the situation in vivo. The present study reports infection of organotypic slice cultures from rat brain with N. fowleri and compares the findings in this culture system with in vivo infection in a rat model of PAM, that proved complementary to that of mice. We found that brain morphology, as present in vivo, is well retained in organotypic slice cultures, and that infection time-course including tissue damage parallels the observations in vivo in the rat. Therefore, organotypic slice cultures from rat brain offer a new in vitro approach to study N. fowleri infection in the context of PAM.
Resumo:
Many studies investigating the aging brain or disease-induced brain alterations rely on accurate and reproducible brain tissue segmentation. Being a preliminary processing step prior to the segmentation, reliableskull-stripping the removal ofnon-brain tissue is also crucial for all later image assessment. Typically, segmentation algorithms rely on an atlas i.e. pre-segmented template data. Brain morphology, however, differs considerably depending on age, sex and race. In addition, diseased brains may deviate significantly from the atlas information typically gained from healthy volunteers. The imposed prior atlas information can thus lead to degradation of segmentation results. The recently introduced MP2RAGE sequence provides a bias-free T1 contrast with heavily reduced T2*- and PD-weighting compared to the standard MP-RAGE [1]. To this end, it acquires two image volumes at different inversion times in one acquisition, combining them to a uniform, i.e. homogenous image. In this work, we exploit the advantageous contrast properties of the MP2RAGE and combine it with a Dixon (i.e. fat-water separation) approach. The information gained by the additional fat image of the head considerably improves the skull-stripping outcome [2]. In conjunction with the pure T1 contrast of the MP2RAGE uniform image, we achieve robust skull-stripping and brain tissue segmentation without the use of an atlas
Resumo:
Whereas adult sex differences in brain morphology and behavior result from developmental exposure to steroid hormones, the mechanism by which steroids differentiate the brain is unknown. Studies to date have described subtle sex differences in levels of proteins and neurotransmitters during brain development, but these have lacked explanatory power for the profound sex differences induced by steroids. We report here a major divergence in the response to injection of the γ-aminobutyric acid type A (GABAA) agonist, muscimol, in newborn male and female rats. In females, muscimol treatment primarily decreased the phosphorylation of cAMP response element binding protein (CREB) within the hypothalamus and the CA1 region of the hippocampus. In contrast, muscimol increased the phosphorylation of CREB in males within these same brain regions. Within the arcuate nucleus, muscimol treatment increased the phosphorylation of CREB in both females and males. Thus, the response to GABA can be excitatory or inhibitory on signal-transduction pathways that alter CREB phosphorylation depending on the sex and the region in developing brain. This divergence in response to GABA allows for a previously unknown form of steroid-mediated neuronal plasticity and may be an initial step in establishing sexually dimorphic signal-transduction pathways in developing brain.
Resumo:
INTRODUCTION Putrefaction of the brain is a challenge to a forensic pathologist because it may lead to considerable organ alterations and restrict documenting reliable autopsy findings. OBJECTIVES This study aims to present a new and systematic evaluation of possible benefits of post-mortem MR Neuroimaging (1.5 Tesla, sequences: T1w, T2w) in putrefied corpses in comparison to PMCT and autopsy. METHODS A post-mortem MRI brain examination was conducted on 35 adult, putrefied corpses after performing a whole body CT scan prior to a forensic autopsy. Imaging data and autopsy findings were compared with regard to brain symmetry, gray and white matter junction, ventricular system, basal ganglia, cerebellum, brain stem, and possible pathological findings. RESULTS At autopsy, a reliable assessment of the anatomical brain structures was often restricted. MR imaging offered an assessment of the anatomical brain structures, even at advanced stages of putrefaction. In two cases, MR imaging revealed pathological findings that were detectable neither by CT scans nor at autopsy. CONCLUSIONS Post-mortem MR imaging of putrefied brains offers the possibility to assess brain morphology, even if the brain is liquefied. Post-mortem MR imaging of the brain should be considered if the assessment of a putrefied brain is crucial to the evaluation of a forensic autopsy case.
Resumo:
Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D-3 acts during brain development. We demonstrate that rats born to vitamin D-3-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D3 has important ramifications for the developing brain. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
There is growing evidence that Vitamin D-3 (1,25-dihydroxyvitamin D-3) is involved in brain development. We have recently shown that the brains of newborn rats from Vitamin D-3 deficient dams were larger than controls, had increased cell proliferation, larger lateral ventricles, and reduced cortical thickness. Brains from these animals also had reduced expression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor. The aim of the current study was to examine if there were any permanent outcomes into adulthood when the offspring of Vitamin D-3 deficient dams were restored to a normal diet. The brains of adult rats were examined at 10 weeks of age after Vitamin D-3 deficiency until birth or weaning. Compared to controls animals that were exposed to transient early Vitamin D-3 deficiency had larger lateral ventricles, reduced NGF protein content, and reduced expression of a number genes involved in neuronal structure, i.e. neurofilament or MAP-2 or neurotransmission, i.e. GABA-(alpha 4). We conclude that transient early life hypovitaminosis D-3 not only disrupts brain development but leads to persistent changes in the adult brain. In light of the high incidence of hypovitammosis D-3 in women of child-bearing age, the public health implications of these findings warrant attention. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology. © 2009 Elsevier B.V. and ECNP.
Resumo:
Despite its large impact on the individual and society, we currently have only a rudimentary understanding of the biological basis of Major Depressive Disorder, even less so in adolescent populations. This thesis focuses on two research questions. First, how do adolescents with depression differ from adolescents who have never been depressed on (1a) brain morphology and (1b) DNA methylation? We studied differences in the fronto-limbic system (a collection of areas responsible for emotion regulation) and methylation at the serotonin transporter (SLC6A4) and FK506 binding protein gene (FKBP5) genes (two genes strongly linked to stress regulation and depression). Second, how does childhood trauma, which is known to increase risk for depression, affect (2a) brain development and (2b) SLC6A4 and FKBP5 methylation? Further, (2c) how might DNA methylation explain how trauma affects brain development in depression? We studied these questions in 24 adolescent depressed patients and 21 controls. We found that (1a) depressed adolescents had decreased left precuneus volume and greater volume of the left precentral gyrus compared to controls; however, no differences in fronto-limbic morphology were identified. Moreover, (1b) individuals with depression had lower levels of FKBP5 methylation than controls. In line with our second hypothesis (2a) greater levels of trauma were associated with decreased volume of a number of fronto-limbic regions. Further, we found that (2b) greater trauma was associated with decreased SLC6A4, but not FKBP5, methylation. Finally, (2c) greater FKBP5, but not SLC6A4, methylation was associated with decreased volume of a number of fronto-limbic regions. The results of this study suggest an association among trauma, DNA methylation and brain development in youth, but the direction of these relationships appears to be inconsistent. Future studies using a longitudinal design will be necessary to clarify these results and help us understand how the brain and epigenome change over time in depressed youth.
Resumo:
Relative eye size, gross brain morphology and central localization of 2-[I-125]iodomelatonin binding sites and melatonin receptor gene expression were compared in six gadiform fish living at different depths in the north-east Atlantic Ocean: Phycis blennoides (capture depth range 265-1260 m), Nezumia aequalis (445-1512 m), Coryphaenoides rupestris (706-1932 m), Trachyrincus murrayi (1010-1884 m), Coryphaenoides guentheri (1030 m) and Coryphaenoides (Nematonurus) armatus (2172-4787 m). Amongst these, the eye size range was 0.15-0.35 of head length with a value of 0.19 for C.(N.) armatus, the deepest species. Brain morphology reflected behavioural differences with well-developed olfactory regions in P.blennoides, T.murrayi and C. (N.) armatus and evidence of olfactory deficit in N. aequalis, C. rupestris and C. guentheri. All species had a clearly defined optic tectum with 2-[I-125] iodomelatonin binding and melatonin receptor gene expression localized to specific brain regions in a similar pattern to that found in shallow-water fish. Melatonin receptors were found throughout the visual structures of the brains of all species. Despite living beyond the depth of penetration of solar light these fish have retained central features associated with the coupling of cycles of growth, behaviour and reproduction to the diel light-dark cycle. How this functions in the deep sea remains enigmatic.