999 resultados para BIOCLIMATIC MODELS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The value of CLIMEX models to inform biocontrol programs was assessed, including predicting the potential distribution of biocontrol agents and their subsequent population dynamics, using bioclimatic models for the weed Parkinsonia aculeata, two Lantana camara biocontrol agents, and five Mimosa pigra biocontrol agents. The results showed the contribution of data types to CLIMEX models and the capacity of these models to inform and improve the selection, release and post release evaluation of biocontrol agents. Foremost among these was the quality of spatial and temporal information as well as the extent to which overseas range data samples the species’ climatic envelope. Post hoc evaluation and refinement of these models requires improved long-term monitoring of introduced agents and their dynamics at well selected study sites. The authors described the findings of these case studies, highlighted their implications, and considered how to incorporate models effectively into biocontrol programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We assessed the vulnerability of blanket peat to climate change in Great Britain using an ensemble of 8 bioclimatic envelope models. We used 4 published models that ranged from simple threshold models, based on total annual precipitation, to Generalised Linear Models (GLMs, based on mean annual temperature). In addition, 4 new models were developed which included measures of water deficit as threshold, classification tree, GLM and generalised additive models (GAM). Models that included measures of both hydrological conditions and maximum temperature provided a better fit to the mapped peat area than models based on hydrological variables alone. Under UKCIP02 projections for high (A1F1) and low (B1) greenhouse gas emission scenarios, 7 out of the 8 models showed a decline in the bioclimatic space associated with blanket peat. Eastern regions (Northumbria, North York Moors, Orkney) were shown to be more vulnerable than higher-altitude, western areas (Highlands, Western Isles and Argyle, Bute and The Trossachs). These results suggest a long-term decline in the distribution of actively growing blanket peat, especially under the high emissions scenario, although it is emphasised that existing peatlands may well persist for decades under a changing climate. Observational data from long-term monitoring and manipulation experiments in combination with process-based models are required to explore the nature and magnitude of climate change impacts on these vulnerable areas more fully.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation maps and bioclimatic zone classifications communicate the vegetation of an area and are used to explain how the environment regulates the occurrence of plants on large scales. Many practises and methods for dividing the world’s vegetation into smaller entities have been presented. Climatic parameters, floristic characteristics, or edaphic features have been relied upon as decisive factors, and plant species have been used as indicators for vegetation types or zones. Systems depicting vegetation patterns that mainly reflect climatic variation are termed ‘bioclimatic’ vegetation maps. Based on these it has been judged logical to deduce that plants moved between corresponding bioclimatic areas should thrive in the target location, whereas plants moved from a different zone should languish. This principle is routinely applied in forestry and horticulture but actual tests of the validity of bioclimatic maps in this sense seem scanty. In this study I tested the Finnish bioclimatic vegetation zone system (BZS). Relying on the plant collection of Helsinki University Botanic Garden’s Kumpula collection, which according to the BZS is situated at the northern limit of the hemiboreal zone, I aimed to test how the plants’ survival depends on their provenance. My expectation was that plants from the hemiboreal or southern boreal zones should do best in Kumpula, whereas plants from more southern and more northern zones should show progressively lower survival probabilities. I estimated probability of survival using collection database information of plant accessions of known wild origin grown in Kumpula since the mid 1990s, and logistic regression models. The total number of accessions I included in the analyses was 494. Because of problems with some accessions I chose to separately analyse a subset of the complete data, which included 379 accessions. I also analysed different growth forms separately in order to identify differences in probability of survival due to different life strategies. In most analyses accessions of temperate and hemiarctic origin showed lower survival probability than those originating from any of the boreal subzones, which among them exhibited rather evenly high probabilities. Exceptionally mild and wet winters during the study period may have killed off hemiarctic plants. Some winters may have been too harsh for temperate accessions. Trees behaved differently: they showed an almost steadily increasing survival probability from temperate to northern boreal origins. Various factors that could not be controlled for may have affected the results, some of which were difficult to interpret. This was the case in particular with herbs, for which the reliability of the analysis suffered because of difficulties in managing their curatorial data. In all, the results gave some support to the BZS, and especially its hierarchical zonation. However, I question the validity of the formulation of the hypothesis I tested since it may not be entirely justified by the BZS, which was designed for intercontinental comparison of vegetation zones, but not specifically for transcontinental provenance trials. I conclude that botanic gardens should pay due attention to information management and curational practices to ensure the widest possible applicability of their plant collections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change during the last five decades has impacted significantly on natural ecosystems and the rate of current climate change is of great concern among conservation biologists. Species Distribution Models (SDMs) have been used widely to project changes in species’ bioclimatic envelopes under future climate scenarios. Here, we aimed to advance this technique by assessing future changes in the bioclimatic envelopes of an entire mammalian order, the Lagomorpha, using a novel framework for model validation based jointly on subjective expert evaluation and objective model evaluation statistics. SDMs were built using climatic, topographical and habitat variables for all 87 lagomorph species under past and current climate scenarios. Expert evaluation and Kappa values were used to validate past and current models and only those deemed ‘modellable’ within our framework were projected under future climate scenarios (58 species). Phylogenetically-controlled regressions were used to test whether species traits correlated with predicted responses to climate change. Climate change is likely to impact more than two-thirds of lagomorph species, with leporids (rabbits, hares and jackrabbits) likely to undertake poleward shifts with little overall change in range extent, whilst pikas are likely to show extreme shifts to higher altitudes associated with marked range declines, including the likely extinction of Kozlov’s Pika (Ochotona koslowi). Smaller-bodied species were more likely to exhibit range contractions and elevational increases, but showing little poleward movement, and fecund species were more likely to shift latitudinally and elevationally. Our results suggest that species traits may be important indicators of future climate change and we believe multi-species approaches, as demonstrated here, are likely to lead to more effective mitigation measures and conservation management. We strongly advocate studies minimising data gaps in our knowledge of the Order, specifically collecting more specimens for biodiversity archives and targeting data deficient geographic regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wine production is strongly affected by weather and climate and thus highly vulnerable to climate change. In Portugal, viticulture and wine production are an important economic activity. In the present study, current bioclimatic zoning in Portugal (1950–2000) and its projected changes under future climate conditions (2041–2070) are assessed through the analysis of an aggregated, categorized bioclimatic index (CatI) at a very high spatial resolution (near 1 km). CatI incorporates the most relevant bioclimatic characteristics of a given region, thus allowing the direct comparison between different regions. Future viticultural zoning is achieved using data from 13 climate model transient experiments following the A1B emission scenario. These data are downscaled using a two-step method of spatial pattern downscaling. This downscaling approach allows characterizing mesoclimatic influences on viticulture throughout Portugal. Results for the recent past depict the current spatial variability of Portuguese viticultural regions. Under future climate conditions, the current viticultural zoning is projected to undergo significant changes, which may represent important challenges for the Portuguese winemaking sector. The changes are quite robust across the different climate models. A lower bioclimatic diversity is also projected, resulting from a more homogeneous warm and dry climate in most of the wine regions. This will lead to changes in varietal suitability and wine characteristics of each region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole-plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm-temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade-offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on the impact of historical, current and future global change require very high-resolution climate data (less or equal 1km) as a basis for modelled responses, meaning that data from digital climate models generally require substantial rescaling. Another shortcoming of available datasets on past climate is that the effects of sea level rise and fall are not considered. Without such information, the study of glacial refugia or early Holocene plant and animal migration are incomplete if not impossible. Sea level at the last glacial maximum (LGM) was approximately 125m lower, creating substantial additional terrestrial area for which no current baseline data exist. Here, we introduce the development of a novel, gridded climate dataset for LGM that is both very high resolution (1km) and extends to the LGM sea and land mask. We developed two methods to extend current terrestrial precipitation and temperature data to areas between the current and LGM coastlines. The absolute interpolation error is less than 1°C and 0.5 °C for 98.9% and 87.8% of all pixels for the first two 1 arc degree distance zones. We use the change factor method with these newly assembled baseline data to downscale five global circulation models of LGM climate to a resolution of 1km for Europe. As additional variables we calculate 19 'bioclimatic' variables, which are often used in climate change impact studies on biological diversity. The new LGM climate maps are well suited for analysing refugia and migration during Holocene warming following the LGM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.