999 resultados para BETA-DELAYED NEUTRONS
Resumo:
Dissertação (Mestrado em Tecnologia Nuclear)
Resumo:
We determined the absolute branch of the T=2 superallowed decay of (32)Ar by detecting the beta(+)-delayed protons and gamma decays of the daughter state. We obtain b(SA)(beta)=(22.71 +/- 0.16)%, which represents the first determination of a proton branch to better than 1%. Using this branch along with the previously determined (32)Ar half-life and energy release, we determined ft=(1552 +/- 12) s for the superallowed decay. This ft value, together with the corrected Ft value extracted from previously known T=1 superallowed decays, yields a measurement of the isospin symmetry breaking correction in (32)Ar decay delta(exp)(C)=(2.1 +/- 0.8)%. This can be compared to a theoretical calculation delta(C)=(2.0 +/- 0.4)%. As by-products of this work, we determined the gamma and proton branches for the decay of the lowest T=2 state of (32)Cl, made a precise determination of the total proton branch and relative intensities of proton groups that leave (31)S in its first excited state and deduced an improved value for the (32)Cl mass.
Resumo:
The calculation of the effective delayed neutron fraction, beff , with Monte Carlo codes is a complex task due to the requirement of properly considering the adjoint weighting of delayed neutrons. Nevertheless, several techniques have been proposed to circumvent this difficulty and obtain accurate Monte Carlo results for beff without the need of explicitly determining the adjoint flux. In this paper, we make a review of some of these techniques; namely we have analyzed two variants of what we call the k-eigenvalue technique and other techniques based on different interpretations of the physical meaning of the adjoint weighting. To test the validity of all these techniques we have implemented them with the MCNPX code and we have benchmarked them against a range of critical and subcritical systems for which either experimental or deterministic values of beff are available. Furthermore, several nuclear data libraries have been used in order to assess the impact of the uncertainty in nuclear data in the calculated value of beff .
Resumo:
This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum (Ta) to Tungsten (W) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable heavy, neutron-rich nuclei. The resulting spectral information inferred from excited states in the tungsten daughter nuclei are compared with results from axially symmetric Hartree–Fock calculations of the nuclear shape and suggest a change in ground state structure for the N = 116 isotone 190W compared to the lighter isotopes of this element.
Resumo:
This conference paper outlines the operation and some of the preliminary physics results using the GSI RISING active stopper. Data are presented from an experiment using combined isomer and beta‐delayed gamma‐ray spectroscopy to study low‐lying spectral and decay properties of heavy‐neutron‐rich nuclei around A∼190 produced following the relativistic projectile fragmentation of 208Pb primary beam. The response of the RISING active stopper detector is demonstrated for both the implantation of heavy secondary fragments and in‐situ decay of beta‐particles. Beta‐delayed gamma‐ray spectroscopy following decays of the neutron‐rich nucleus 194Re is presented to demonstrate the experimental performance of the set‐up. The resulting information inferred from excited states in the W and Os daughter nuclei is compared with results from Skyrme Hartree‐Fock predictions of the evolution of nuclear shape.
Resumo:
The book presents results of comprehensive geological investigations carried out during Cruise 8 of R/V "Vityaz-2" to the western part of the Black Sea in 1984. Systematic studies in the Black Sea during about hundred years have not weakened interest in the sea. Lithological and geochemical studies of sediments in estuarine areas of the Danube and the Kyzyl-Irmak rivers, as well as in adjacent parts of the deep sea and some other areas were the main aims of the cruise. Data on morphological structures of river fans, lithologic and chemical compositions of sediments in the fans and their areal distribution, forms of occurrence of chemical elements, role of organic matter and gases in sedimentation and diagenesis are given and discussed in the book.
Resumo:
"Report written: January 1967; Report distributed: November 20, 1967."
Resumo:
Results of uranium content determinations in 76 samples of surface layer bottom sediments, from sediment cores, and deep-sea drilling cores are reported. These data confirm previously established regularities of uranium distribution in Black Sea bottom sediments. The main factors of its concentration are hydrochemical features of the hydrogen sulfide enrichment zone and enrichment of deep-sea sediments in organic matter resulting to increase (4-6 times) of uranium content in comparison with its average content in sedimentary rocks.
Resumo:
Type I diabetes is thought to occur as a result of the loss of insulin-producing pancreatic beta cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the beta cells, is used to trigger the initial cell death. High single doses of STZ cause extensive beta -cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), beta -cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in A-PNG(-/-) islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the beta cells of APNG(-/-) mice. Apoptosis was not observed in PARP-inhibited APNG(+/+) mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG(-/-) mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of beta -cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG(-/-) and APNG(-/-) mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG(-/-) mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) and transforming growth factor beta 3 (TGF-beta 3) are members of the TGF-beta superfamily with high neurotrophic activity on cultured nigral dopamine neurons. We investigated the effects of intracerebral administration of GDNF and TGF-beta 3 on the delayed cell death of the dopamine neurons in the rat substantia nigra following 6-hydroxydopamine lesions of dopaminergic terminals in the striatum. Fluorescent retrograde tracer injections and tyrosine hydroxylase immunocytochemistry demonstrated nigral degeneration with an onset 1 week after lesion, leading to extensive death of nigral neurons 4 weeks postlesion. Administration of recombinant human GDNF for 4 weeks over the substantia nigra at a cumulative dose of 140 micrograms, starting on the day of lesion, completely prevented nigral cell death and atrophy, while a single injection of 10 micrograms 1 week postlesion had a partially protective effect. Continuous administration of TGF-beta 3, starting on the day of lesion surgery, did not affect nigral cell death or atrophy. These findings support the notion that GDNF, but not TGF-beta 3, is a potent neurotrophic factor for nigral dopamine neurons in vivo.