527 resultados para BASOLATERAL AMYGDALA
Resumo:
The basolateral amygdala (BLA) is a complex brain region associated with processing emotional states, such as fear, anxiety, and stress. Some aspects of these emotional states are driven by the network activity of synaptic connections, derived from both local circuitry and projections to the BLA from other regions. Although the synaptic physiology and general morphological characteristics are known for many individual cell types within the BLA, the combination of morphological, electrophysiological, and distribution of neurochemical GABAergic synapses in a three-dimensional neuronal arbor has not been reported for single neurons from this region. The aim of this study was to assess differences in morphological characteristics of BLA principal cells and interneurons, quantify the distribution of GABAergic neurochemical synapses within the entire neuronal arbor of each cell type, and determine whether GABAergic synaptic density correlates with electrophysiological recordings of inhibitory postsynaptic currents. We show that BLA principal neurons form complex dendritic arborizations, with proximal dendrites having fewer spines but higher densities of neurochemical GABAergic synapses compared with distal dendrites. Furthermore, we found that BLA interneurons exhibited reduced dendritic arbor lengths and spine densities but had significantly higher densities of putative GABAergic synapses compared with principal cells, which was correlated with an increased frequency of spontaneous inhibitory postsynaptic currents. The quantification of GABAergic connectivity, in combination with morphological and electrophysiological measurements of the BLA cell types, is the first step toward a greater understanding of how fear and stress lead to changes in morphology, local connectivity, and/or synaptic reorganization of the BLA.
Resumo:
The role of the amygdala in the mediation of fear and anxiety has been extensively investigated. However, how the amygdala functions during the organization of the anxiety-like behaviors generated in the elevated plus maze (EPM) is still under investigation. The basolateral (BLA) and the central (CeA) nuclei are the main input and output stations of the amygdala. In the present study, we ethopharmacologically analyzed the behavior of rats subjected to the EPM and the tissue content of the monoamines dopamine (DA) and serotonin (5-HT) and their metabolites in the nucleus accumbens (NAc), dorsal hippocampus (DH), and dorsal striatum (DS) of animals injected with saline or midazolam (20 and 30 nmol/0.2 mu L) into the BLA or CeA. Injections of midazolam into the CeA, but not BLA, caused clear anxiolytic-like effects in the EPM. These treatments did not cause significant changes in 5-HT or DA contents in the NAc, DH, or DS of animals tested in the EPM. The data suggest that the anxiolytic-like effects of midazolam in the EPM also appear to rely on GABA-benzodiazepine mechanisms in the CeA, but not BLA, and do not appear to depend on 5-HT and DA mechanisms prevalent in limbic structures.
Resumo:
Evidence that lesions of the basolateral amygdala complex (BLC) impair memory for fear conditioning in rats, measured by lack of “freezing” behavior in the presence of cues previously paired with footshocks, has suggested that the BLC may be a critical locus for the memory of fear conditioning. However, evidence that BLC lesions may impair unlearned as well as conditioned freezing makes it difficult to interpret the findings of studies assessing conditioned fear with freezing. The present study investigated whether such lesions prevent the expression of several measures of memory for contextual fear conditioning in addition to freezing. On day 1, rats with sham lesions or BLC lesions explored a Y maze. The BLC-lesioned rats (BLC rats) displayed a greater exploratory activity. On day 2, each of the rats was placed in the “shock” arm of the maze, and all of the sham and half of the BLC rats received footshocks. A 24-hr retention test assessed the freezing, time spent per arm, entries per arm, and initial entry into the shock arm. As previously reported, shocked BLC rats displayed little freezing. However, the other measures indicated that the shocked BLC rats remembered the fear conditioning. They entered less readily and less often and spent less time in the shock arm than did the control nonshocked BLC rats. Compared with the sham rats, the shocked BLC rats entered more quickly and more often and spent more time in the shock arm. These findings indicate that an intact BLC is not essential for the formation and expression of long-term cognitive/explicit memory of contextual fear conditioning.
Resumo:
Evidence indicates that the modulatory effects of the adrenergic stress hormone epinephrine as well as several other neuromodulatory systems on memory storage are mediated by activation of β-adrenergic mechanisms in the amygdala. In view of our recent findings indicating that the amygdala is involved in mediating the effects of glucocorticoids on memory storage, the present study examined whether the glucocorticoid-induced effects on memory storage depend on β-adrenergic activation within the amygdala. Microinfusions (0.5 μg in 0.2 μl) of either propranolol (a nonspecific β-adrenergic antagonist), atenolol (a β1-adrenergic antagonist), or zinterol (a β2-adrenergic antagonist) administered bilaterally into the basolateral nucleus of the amygdala (BLA) of male Sprague–Dawley rats 10 min before training blocked the enhancing effect of posttraining systemic injections of dexamethasone (0.3 mg/kg) on 48-h memory for inhibitory avoidance training. Infusions of these β-adrenergic antagonists into the central nucleus of the amygdala did not block the dexamethasone-induced memory enhancement. Furthermore, atenolol (0.5 μg) blocked the memory-enhancing effects of the specific glucocorticoid receptor (GR or type II) agonist RU 28362 infused concurrently into the BLA immediately posttraining. These results strongly suggest that β-adrenergic activation is an essential step in mediating glucocorticoid effects on memory storage and that the BLA is a locus of interaction for these two systems.
Resumo:
GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke in the postsynaptic interneuron a monosynaptic inhibitory synaptic current, followed by a disynaptic excitatory glutamatergic synaptic current. Interneuron-evoked glutamatergic events were blocked by antagonists of either AMPA/kainate or GABA(A) receptors, and could be seen concurrently in both presynaptic and postsynaptic interneurons. These results show that single action potentials in a GABAergic interneuron can drive glutamatergic principal neurons to threshold, resulting in both feedforward and feedback excitation. In interneuron pairs that both receive glutamatergic inputs after an interneuron spike, electrical coupling and bidirectional GABAergic connections occur with a higher probability relative to other interneuron pairs. We propose that this form of GABAergic excitation provides a means for the reliable and specific recruitment of homogeneous interneuron networks in the basal amygdala.
Resumo:
Aims. The individual susceptibility to cocaine addiction, a factor of interest in the understanding and prevention of this disorder, may be predicted by certain behavioral traits. However, these are not usually taken into account in research, making it difficult to identify whether they are a cause or a consequence of drug use. Methods. Male C57BL/6J mice underwent a battery of behavioral tests (elevated plus maze, hole-board, novelty preference in the Y maze, episodic-like object recognition memory and forced swimming test), followed by a cocaine-conditioned place preference (CPP) training to assess the reinforcing effect of the drug. In a second study, we aimed to determine the existence of neurobiological differences between the mice expressing high or low CPP by studying the number of neurons in certain addiction-related structures: the medial prefrontal cortex, the basolateral amygdala and the ventral tegmental area. Results. Anxiety-like behaviors in the elevated plus maze successfully predicted the cocaine-CPP behavior, so that the most anxious mice were also more likely to search for cocaine in a CPP paradigm. In addition, these mice exhibited an increased number of neurons in the basolateral amygdala, a key structure in emotional response including anxiety expression, without differences in the others regions analyzed. Conclusions. Our results suggest a relevant role of anxiety as a psychological risk factor for cocaine vulnerability, with the basolateral amygdala as potential common neural center for both anxiety and addiction.
Resumo:
A growing body of evidence indicates that facilitation of serotonin-2C receptor (5-HT2CR)-mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) is involved in anxiety generation. We investigated here whether BLA 5-HT(2C)Rs exert a differential role in the regulation of defensive behaviours related to generalized anxiety (inhibitory avoidance) and panic (escape) disorders. We also evaluated whether activation of BLA 5-HT(2C)Rs accounts for the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine and fluoxetine. Male Wistar rats were tested in the elevated T-maze after intra-BLA injection of the endogenous agonist 5-HT, the 5-HT2CR agonist MK-212 or the 5-HT2CR antagonist SB-242084. This test allows the measurement of inhibitory avoidance acquisition and escape expression. We also investigated whether intra-BLA administration of SB-242084 interferes with the acute anxiogenic effect caused by imipramine and fluoxetine in the Vogel conflict test, and imipramine in the elevated T-maze. While intra-BLA administration of 5-HT and MK-212 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, SB-242084 had the opposite effect. None of these drugs affected escape performance. Intra-BLA injection of a sub-effective dose of SB-242084 fully blocked the anxiogenic effect caused either by the local microinjection of 5-HT or the systemic administration of imipramine and fluoxetine. Our findings indicate that 5-HT(2C)Rs in BLA are selectively involved in the regulation of defensive behaviours associated with generalized anxiety, but not panic. The results also provide the first direct evidence that activation of BLA 5-HT(2C)Rs accounts for the short-term aversive effect of antidepressants.
Resumo:
Chronic ethanol exposure leads to dysregulation of the hypothalamic-pituitary-adrenal axis, leading to changes in glucocorticoid release and function that have been proposed to maintain pathological alcohol consumption and increase vulnerability to relapse during abstinence. The objective of this study was to determine whether mifepristone, a glucocorticoid receptor antagonist, plays a role in ethanol self-administration and reinstatement. Male, Long-Evans rats were trained to self-administer either ethanol or sucrose in daily 30 min operant self-administration sessions using a fixed ratio 3 schedule of reinforcement. Following establishment of stable baseline responding, we examined the effects of mifepristone on maintained responding and yohimbine-induced increases in responding for ethanol and sucrose. Lever responding was extinguished in separate groups of rats and animals were tested for yohimbine-induced reinstatement and corticosterone release. We also investigated the effects of local mifepristone infusions into the central amygdala (CeA) on yohimbine-induced reinstatement of ethanol- and sucrose-seeking. In addition, we infused mifepristone into the basolateral amygdala (BLA) in ethanol-seeking animals as an anatomical control. We show that both systemic and intra-CeA (but not BLA) mifepristone administration suppressed yohimbine-induced reinstatement of ethanol-seeking, while only systemic injections attenuated sucrose-seeking. In contrast, baseline consumption, yohimbine-induced increases in responding, and circulating CORT levels were unaffected. The data indicate that the CeA plays an important role in the effects of mifepristone on yohimbine-induced reinstatement of ethanol-seeking. Mifepristone may be a valuable pharmacotherapeutic strategy for preventing relapse to alcohol use disorders and, as it is FDA approved, may be a candidate for clinical trials in the near future.
Resumo:
Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.
Resumo:
Pavlovian fear conditioning is an evolutionary conserved and extensively studied form of associative learning and memory. In mammals, the lateral amygdala (LA) is an essential locus for Pavlovian fear learning and memory. Despite significant progress unraveling the cellular mechanisms responsible for fear conditioning, very little is known about the anatomical organization of neurons encoding fear conditioning in the LA. One key question is how fear conditioning to different sensory stimuli is organized in LA neuronal ensembles. Here we show that Pavlovian fear conditioning, formed through either the auditory or visual sensory modality, activates a similar density of LA neurons expressing a learning-induced phosphorylated extracellular signal-regulated kinase (p-ERK1/2). While the size of the neuron population specific to either memory was similar, the anatomical distribution differed. Several discrete sites in the LA contained a small but significant number of p-ERK1/2-expressing neurons specific to either sensory modality. The sites were anatomically localized to different levels of the longitudinal plane and were independent of both memory strength and the relative size of the activated neuronal population, suggesting some portion of the memory trace for auditory and visually cued fear conditioning is allocated differently in the LA. Presenting the visual stimulus by itself did not activate the same p-ERK1/2 neuron density or pattern, confirming the novelty of light alone cannot account for the specific pattern of activated neurons after visual fear conditioning. Together, these findings reveal an anatomical distribution of visual and auditory fear conditioning at the level of neuronal ensembles in the LA.
Resumo:
Centrally injected histamine (HA) affects heart rate (HR), arterial blood pressure (BP), and sympathetic activity in rats. The posterodorsal medial amygdala (MePD) has high levels of histidine decarboxylase, connections with brain areas involved with the modulation of cardiovascular responses, and is relevant for the pathogenesis of hypertension. However, there is no report demonstrating the role of the MePD histaminergic activity on the cardiovascular function in awake rats. The alms of the present work were: 1) to study the effects of two doses (10-100 nM) of HA microinjected in the MePD on basal cardiovascular recordings and on baroreflex- and chemoreflex-mediated responses; 2) to reveal whether cardiovascular reflex responses could be affected by MePD microinjections of (R)-alpha-methylhistamine (AH(3)), an agonist of the inhibitory autoreceptor H(3); and, 3) to carry out a power spectral analysis to evaluate the contribution of the sympathetic and parasympathetic components in the variability of the HR and BP recordings. When compared with the control group (microinjected with saline, 0.3 mu l), HA (10 nM) promoted an increase in the MAP(50), i.e. the mean value of BP at half of the HR range evoked by the baroreflex response. Histamine (100 nM) did not affect the baroreflex activity, but significantly decreased the parasympathetic component of the HR variability, increased the sympathetic/parasympathetic balance at basal conditions (these two latter evaluated by the power spectral analysis), and promoted an impairment in the chemoreflex bradycardic response. Microinjection of AH(3) (10 mu M) led to mixed results, which resembled the effects of both doses of HA employed here. Present data suggest that cardiovascular changes induced by baroreceptors and chemoreceptors involve the histaminergic activity in the MePD. This neural regulation of reflex cardiovascular responses can have important implications for homeostatic and allostatic conditions and possibly for the behavioral displays modulated by the rat MePD. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The basolateral amygdala complex (BLA) is involved in acquisition of contextual and auditory fear conditioning. However, the BLA is not a single structure but comprises a group of nuclei, including the lateral (LA), basal (BA) and accessory basal (AB) nuclei. While it is consensual that the LA is critical for auditory fear conditioning, there is controversy on the participation of the BA in fear conditioning. Hodological and neurophysiological findings suggest that each of these nuclei processes distinct information in parallel; the BA would deal with polymodal or contextual representations, and the LA would process unimodal or elemental representations. Thus, it seems plausible to hypothesize that the BA is required for contextual, but not auditory, fear conditioning. This hypothesis was evaluated in Wistar rats submitted to multiple-site ibotenate-induced damage restricted to the BA and then exposed to a concurrent contextual and auditory fear conditioning training followed by separated contextual and auditory conditioning testing. Differing from electrolytic lesion and lidocaine inactivation, this surgical approach does not disturb fibers of passage originating in other brain areas, restricting damage to the aimed nucleus. Relative to the sham-operated controls, rats with selective damage to the BA exhibited disruption of performance in the contextual, but not the auditory, component of the task. Thus, while the BA seems required for contextual fear conditioning, it is not critical for both an auditory-US association, nor for the expression of the freezing response. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The reinforcement omission effect (ROE) has been attributed to both motivational and attentional consequences of surprising reinforcement omission. Recent evidence suggests that the basolateral complex of the amygdala is involved in motivational components related to reinforcement value, whereas the central nucleus of the amygdala is involved in the processing of the attentional consequences of surprise. This study was designed to verify whether the mechanisms involved in the ROE depend on the integrity of either the basolateral amygdala complex or central nucleus of the amygdala. The ROE was evaluated in rats with lesions of either the central nucleus or basolateral complex of the amygdala and trained on a fixed-interval schedule procedure (Experiment 1) and fixed-interval with limited hold signaled schedule procedure (Experiment 2). The results of Experiment 1 showed that sham-operated rats and rats with lesions of either the central nucleus or basolateral area displayed the ROE. In contrast, in Experiment 2, subjects with lesions of the central nucleus or basolateral complex of the amygdala exhibited a smaller ROE compared with sham-operated subjects. Thus, the effects of selective lesions of amygdala subregions on the ROE in rats depended on the training procedure. Furthermore, the absence of differences between the lesioned groups in either experiment did not allow the dissociation of attentional or motivational components of the ROE with functions of specific areas of the amygdala. Thus, results did not show a functional double-dissociation between the central nucleus and basolateral area in the ROE.