943 resultados para B-spline function
Resumo:
In this paper we introduce a new Wiener system modeling approach for memory high power amplifiers in communication systems using observational input/output data. By assuming that the nonlinearity in the Wiener model is mainly dependent on the input signal amplitude, the complex valued nonlinear static function is represented by two real valued B-spline curves, one for the amplitude distortion and another for the phase shift, respectively. The Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first order derivatives recursion. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
Functionally graded materials are composite materials wherein the composition of the constituent phases can vary in a smooth continuous way with a gradation which is function of its spatial coordinates. This characteristic proves to be an important issue as it can minimize abrupt variations of the material properties which are usually responsible for localized high values of stresses, and simultaneously providing an effective thermal barrier in specific applications. In the present work, it is studied the static and free vibration behaviour of functionally graded sandwich plate type structures, using B-spline finite strip element models based on different shear deformation theories. The effective properties of functionally graded materials are estimated according to Mori-Tanaka homogenization scheme. These sandwich structures can also consider the existence of outer skins of piezoelectric materials, thus achieving them adaptive characteristics. The performance of the models, are illustrated through a set of test cases. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Molts sistemes mecànics existents tenen un comportament vibratori funcionalment perceptible, que es posa de manifest enfront d'excitacions transitòries. Normalment, les vibracions generades segueixen presents després del transitori (vibracions residuals), i poden provocar efectes negatius en la funció de disseny del mecanisme. El mètode que es proposa en aquesta tesi té com a objectiu principal la síntesi de lleis de moviment per reduir les vibracions residuals. Addicionalment, els senyals generats permeten complir dues condicions definides per l'usuari (anomenats requeriments funcionals). El mètode es fonamenta en la relació existent entre el contingut freqüencial d'un senyal transitori, i la vibració residual generada, segons sigui l'esmorteïment del sistema. Basat en aquesta relació, i aprofitant les propietats de la transformada de Fourier, es proposa la generació de lleis de moviment per convolució temporal de polsos. Aquestes resulten formades per trams concatenats de polinomis algebraics, cosa que facilita la seva implementació en entorns numèrics per mitjà de corbes B-spline.
Resumo:
In this article a simple and effective controller design is introduced for the Hammerstein systems that are identified based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The controller is composed by computing the inverse of the B-spline approximated nonlinear static function, and a linear pole assignment controller. The contribution of this article is the inverse of De Boor algorithm that computes the inverse efficiently. Mathematical analysis is provided to prove the convergence of the proposed algorithm. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate B-spline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.
Resumo:
In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.
Resumo:
A simple and effective algorithm is introduced for the system identification of Wiener system based on the observational input/output data. The B-spline neural network is used to approximate the nonlinear static function in the Wiener system. We incorporate the Gauss-Newton algorithm with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialization scheme. The efficacy of the proposed approach is demonstrated using an illustrative example.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
In this article a simple and effective algorithm is introduced for the system identification of the Wiener system using observational input/output data. The nonlinear static function in the Wiener system is modelled using a B-spline neural network. The Gauss–Newton algorithm is combined with De Boor algorithm (both curve and the first order derivatives) for the parameter estimation of the Wiener model, together with the use of a parameter initialisation scheme. Numerical examples are utilised to demonstrate the efficacy of the proposed approach.
Resumo:
In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.
Resumo:
A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.
Resumo:
Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV
Resumo:
Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.
Resumo:
Bariatric surgery in morbidly obese type 2 diabetic (T2DM) patients is associated with high rates of diabetes remission. We investigated the mechanisms of the anti-diabetic effect of the laparoscopic ileal interposition with sleeve gastrectomy (LII-SG) in normal weight (NW), overweight (OW) and obese (OB) T2DM patients. Ninety-four patients (aged 54 +/- 8 years) with long-standing (median 10 years), treated diabetes (median HbA(1c) = 8.6%), who were NW (15), OW (64) or OB (15) based on BMI, underwent LII-SG. Insulin sensitivity and parameters of -cell function were measured from an Oral Glycaemic Tolerance Test pre- and post-operatively. At a median of 13.4 months post-operatively, weight loss averaged 9.4 +/- 1.3, 16.8 +/- 0.8 and 23.2 +/- 1.7 kg in NW, OW and OB subjects, respectively (p < 0.0001). Insulin sensitivity was fully restored (395 [108] vs 208 [99] ml min(-1) m(-2)), fasting insulin secretion rate decreased (68 [52] vs 146 [120] pmol min(-1) m(-2)) and total insulin output increased (52 [26] vs 39 [28] nmol m(-2), all p a parts per thousand currency signaEuro parts per thousand 0.001). -cell glucose sensitivity doubled (37 [33] vs 18 [24] mol min(-1) m(-2) mM(-1), p < 0.0001). The only parameter predicting remission of diabetes was a lower baseline insulin sensitivity (p = 0.005). LII-SG induced changes on T2DM by mechanisms in part distinct from weight loss, principally involving restoration of insulin sensitivity and improvement of -cell function.
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.