878 resultados para Autonomic neuropathy
Resumo:
Cardiac autonomic neuropathy is known to occur in alcoholics but the extent of its subclinical form is not usually recognized, Heart Rate Variability (HRV) analysis can detect subclinical autonomic neuropathy. In this study the HRV parameters were compared in 20 neurologically asymptomatic alcoholics, 20 age-matched normals and 16 depressives. All were males, ECG was recorded in a quiet room for four minutes in supine position. Time and Frequency domain parameters of HRV were computed by a researcher blind to clinical details. Alcoholics had significantly smaller Coefficient of Variation of R-R intervals (CVR-R) on time domain analysis and smaller HF band (0.15-0.5 Hz) power on spectral analysis. The decreased Heart Rate Variability indicates cardiac autonomic dysfunction.
Resumo:
In the diagnosis of diabetic autonomic neuropathy (DAN) various autonomic tests are used. We took a novel statistical approach to find a combination of autonomic tests that best separates normal controls from patients with DAN.
Resumo:
AIM: We conducted a study to investigate whether patients with somatization disorder show abnormal values in autonomic testing, especially in the central baroreceptor sensitivity. PATIENTS AND METHODS: Seventy-one patients were included. All had a diagnosis of somatization disorder (ICD-10, F45.0). Psychometric testing was performed by means of validated questionnaires (STAI, STAXI, FPI, GBB, ADS, SOMS, SCL-90-R). Autonomic regulation was analyzed by international standards using frequency spectral calculation by fast Fourier transformation. Thereby 3 different groups were detected: 12 patients with a baroreceptor sensitivity (BRS) of less than 3.0 ms/mm Hg, 20 patients with normal BRS (> 9.0 ms/mm Hg), and an in-between group (n = 39) with intermediate BRS. Controlling for age, a covariance analysis was calculated. RESULTS: The two extreme groups showed no difference in psychometric testing. However, significant differences were discernible in spectral values of mid-frequency-band (p < 0.05) in a covariance analysis with age as covariate. Equally the 24 h blood pressure determination showed significantly higher values for the group with BRS < 3.0 ms/mm Hg (p < 0.05 to 0.001). CONCLUSIONS: In a high percentage (17 %) of patients diagnosed to have somatization disorder autonomic dysregulation becomes apparent and is accompanied by increased blood pressure. Therefore it doesn't seem accurate to overlook concomitant organic lesions in somatization disorders despite patients lacking overtly clinical signs but suffering from various unspecific symptoms.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Purpose The presence of a lymphocytic infiltration in autonomic ganglia and an increased prevalence of autoantibodies and iritis in diabetic patients with autonomic neuropathy suggests a role for autoimmune mechanisms in the development of diabetic and perhaps somatic neuropathy. Corneal Langerhans cells are antigenpresenting cells which can be identified in corneal immunologic conditions using in-vivo confocal microscopy. The aim of this study was to assess the presence and density of Langerhans cells (LCs) in Bowman’s layer of the cornea in diabetic patients with varying degrees of neuropathy compared to healthy control subjects. Method 128 diabetic patients aged 58±1 years with differing severity of neuropathy (NDS – 4.7±0.28) and 26 control subjects aged 53±3 years were examined with in-vivo corneal confocal microscopy to quantify the density of “Langerhans cells” (LCs). Results LCs were observed more often in diabetic patients (73.8%) compared to control subjects (46.1%), P = 0.001. The LC density (number/mm2) was also significantly increased in diabetic patients (17.73±1.45) compared to control subjects (6.94±1.58, P = 0.001). There was a significant correlation between the density of LCs with age (r = 0.162, P = 0.047) and severity of neuropathy assessed by NDS (r =−0.202, P = 0.02). Conclusions In vivo corneal confocal microscopy enables quantification of Langerhans cells in Bowman’s layer of the cornea. There is a relationship between density of LCs and the degree of nerve damage. Corneal confocal microscopy could be a valuable tool to establish the role of immune mediated corneal nerve damage and provide insights into the pathogenesis of diabetic neuropathy.
Resumo:
β-Adrenoceptor blocking agents (β-blockers) that at low concentrations antagonize cardiostimulant effects of catecholamines, but at high concentrations also cause cardiostimulation, have been appearing since the late 1960s. These cardiostimulant β-blockers, coined non-conventional partial agonists, antagonize the effects of catecholamines through a high-affinity site (β1HAR), but cause cardiostimulation mainly through a low-affinity site (β1LAR) of the myocardial β1-adrenoceptor. The experimental non-conventional partial agonist (−)-CGP12177 increases cardiac L-type Ca2+ current density and Ca2+ transients, shortens action potential duration but augments action potential plateau, increases heart rate and force, as well as causes arrhythmic Ca2+ transients and arrhythmic cardiocyte contractions. Other β-blockers, which do not cause cardiostimulation, consistently have lower affinity for β1LAR than β1HAR. These sites were verified and the cardiac pharmacology of non-conventional partial agonists confirmed on recombinant β1-adrenoceptors and on β1-adrenoceptors overexpressed into the heart. A targeted mutation of Asp138 to Glu138 virtually abolished the pharmacology of β1HAR but left intact the pharmacology of β1LAR. Non-conventional partial agonists may be beneficial for the treatment of peripheral autonomic neuropathy but probably due to their arrhythmic propensities, may be harmful for the treatment of chronic heart failure.
Resumo:
Acute intermittent porphyria (AIP, MIM #176000) is an inherited metabolic disease due to a partial deficiency of the third enzyme, hydroxymethylbilane synthase (HMBS, EC: 4.3.1.8), in the haem biosynthesis. Neurological symptoms during an acute attack, which is the major manifestation of AIP, are variable and relatively rare, but may endanger a patient's life. In the present study, 12 Russian and two Finnish AIP patients with severe neurological manifestations during an acute attack were studied prospectively from 1995 to 2006. Autonomic neuropathy manifested as abdominal pain (88%), tachycardia (94%), hypertension (75%) and constipation (88%). The most common neurological sign was acute motor peripheral neuropathy (PNP, 81%) often associated with neuropathic sensory loss (54%) and CNS involvement (85%). Despite heterogeneity of the neurological manifestations in our patients with acute porphyria, the major pattern of PNP associated with abdominal pain, dysautonomia, CNS involvement and mild hepatopathy could be demonstrated. If more strict inclusion criteria for biochemical abnormalities (>10-fold increase in excretion of urinary PBG) are applied, neurological manifestations in an acute attack are probably more homogeneous than described previously, which suggests that some of the neurological patients described previously may not have acute porphyria but rather secondary porphyrinuria. Screening for acute porphyria using urinary PBG is useful in a selected group of neurological patients with acute PNP or encephalopathy and seizures associated with pain and dysautonomia. Clinical manifestations and the outcome of acute attacks were used as a basis for developing a 30-score scale of the severity of an acute attack. This scale can easily be used in clinical practice and to standardise the outcome of an attack. Degree of muscle weakness scored by MRC, prolonged mechanical ventilation, bulbar paralysis, impairment of consciousness and hyponatraemia were important signs of a poor prognosis. Arrhythmia was less important and autonomic dysfunction, severity of pain and mental symptoms did not affect the outcome. The delay in the diagnosis and repeated administrations of precipitating factors were the main cause of proceeding of an acute attack into pareses and severe CNS involvement and a fatal outcome in two patients. Nerve conduction studies and needle EMG were performed in eleven AIP patients during an acute attack and/or in remission. Nine patients had severe PNP and two patients had an acute encephalopathy but no clinically evident PNP. In addition to axonopathy, features suggestive of demyelination could be demonstrated in patients with severe PNP during an acute attack. PNP with a moderate muscle weakness was mainly pure axonal. Sensory involvement was common in acute PNP and could be subclinical. Decreased conduction velocities with normal amplitudes of evoked potentials during acute attacks with no clinically evident PNP indicated subclinical polyneuropathy. Reversible symmetrical lesions comparable with posterior reversible encephalopathy syndrome (PRES) were revealed in two patients' brain CT or MRI during an acute attack. In other five patients brain MRI during or soon after the symptoms was normal. The frequency of reversible brain oedema in AIP is probably under-estimated since it may be short-lasting and often indistinguishable on CT or MRI. In the present study, nine different mutations were identified in the HMBS gene in 11 unrelated Russian AIP patients from North Western Russia and their 32 relatives. AIP was diagnosed in nine symptom-free relatives. The majority of the mutations were family-specific and confirmed allelic heterogeneity also among Russian AIP patients. Three mutations, c.825+5G>C, c.825+3_825+6del and c.770T>C, were novel. Six mutations, c.77G>A (p.R26H), c.517C>T (p.R173W), c.583C>T (p.R195C), c.673C>T (p.R225X), c.739T>C (p.C247R) and c.748G>C (p.E250A), have previously been identified in AIP patients from Western and other Eastern European populations. The effects of novel mutations were studied by amplification and sequencing of the reverse-transcribed total RNA obtained from the patients' lymphoblastoid or fibroblast cell lines. The mutations c.825+5G>C and c.770T>C resulted in varyable amounts of abnormal transcripts, r.822_825del (p.C275fsX2) and [r.770u>c, r.652_771del, r.613_771del (p.L257P, p.G218_L257del, p.I205_L257del)]. All mutations demonstrated low residual activities (0.1-1.3 %) when expressed in COS-1 cells confirming the causality of the mutations and the enzymatic defect of the disease. The clinical outcome, prognosis and correlation between the HMBS genotype and phenotype were studied in 143 Finnish and Russian AIP patients with ten mutations (c.33G>T, c.97delA, InsAlu333, p.R149X, p.R167W, p.R173W, p.R173Q, p.R225G, p.R225X, c.1073delA) and more than six patients in each group. The patients were selected from the pool of 287 Finnish AIP patients presented in a Finnish Porphyria Register (1966-2003) and 23 Russian AIP patients (diagnosed 1995-2003). Patients with the p.R167W and p.R225G mutations showed lower penetrance (19% and 11%) and the recurrence rate (33% and 0%) in comparison to the patients with other mutations (range 36 to 67% and 0 to 66%, respectively), as well as milder biochemical abnormalities [urinary porphobilinogen 47±10 vs. 163±21 mol/L, p<0.001; uroporphyrin 130±40 vs. 942±183 nmol/L, p<0.001] suggesting a milder form of AIP in these patients. Erythrocyte HMBS activity did not correlate with the porphobilinogen excretion in remission or the clinical of the disease. In all AIP severity patients, normal PBG excretion predicted freedom from acute attacks. Urinary PBG excretion together with gender, age at the time of diagnosis and mutation type could predict the likelihood of acute attacks in AIP patients.
Resumo:
Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.
Resumo:
Background/Aims: In diabetic ventricular myocytes, transient outward potassium current (I-to) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on I-to since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (beta AR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the beta AR agonist isoproterenol recovers I-to amplitude to normal values. Methods: Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. I-to current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. Results: Stimulation of beta AR activates first a G alpha s protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the G alpha i protein. This leads to the activation of the beta AR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. Conclusion: beta(2)AR stimulation activates a G alpha s and G alpha i protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart.
Resumo:
A Neuropatia autonômica cardiovascular (NAC), apesar de ter sido apontada como fator de risco independente para doença cardiovascular (DCV) em pacientes com diabetes tipo 1 (DM1), permanece subdiagnosticada. Os objetivos do trababalho foram determinar a prevalência de NAC e seus indicadores clínicos e laboratoriais em pacientes com DM1 e a associação com outras complicações crônicas do diabetes, além de avaliar a concordância entre os critérios diagnósticos da NAC determinados pelos parâmetros da análise espectral e pelos testes reflexos cardiovasculares. Pacientes com DM1, duração da doença ≥ 5 anos e com idade ≥ 13 anos foram submetidos a um questionário clínico-epidemiológico, a coleta de sangue e de urina para determinação da concentração urinária de albumina, ao mapeamento de retina, e exame clínico para pesquisa de neuropatia diabética sensitivo motora além da realização de testes reflexos cardiovasculares. Cento e cinquenta e um pacientes com DM1, 53.6 % do sexo feminino, 45.7% brancos, com média de idade de 33.4 13 anos, idade ao diagnóstico de 17.2 9.8 anos, duração de DM1 de 16.3 9.5 anos, índice de massa corporal (IMC) de 23.4 (13.7-37.9) Kg/m2 e níveis de hemoglobina glicada de 9.1 2% foram avaliados. Após realização dos testes para rastreamento das complicações microvasculares, encontramos neuropatia diabética sensitivo motora, retinopatia diabética, nefropatia diabética e NAC em 44 (29.1%), 54 (38%), 35 (24.1%) e 46 (30.5%) dos pacientes avaliados, respectivamente. A presença de NAC foi associada com idade (p=0.01), duração do DM (p=0.036), HAS (p=0.001), frequência cardíaca em repouso (p=0.000), HbA1c (p=0.048), uréia (p=0.000), creatinina (p=0.008), taxa de filtração glomerular (p=0.000), concentração urinária de albumina (p=0.000), níveis séricos de LDL-colesterol (p=0.048), T4 livre (p=0.023) e hemoglobina (p=0.01) e a presença de retinopatia (p=0.000), nefropatia (p=0.000) e neuropatia diabética sensitivo motora (p=0.000), além dos seguintes sintomas; lipotimia (p=0.000), náuseas pós alimentares (p=0.042), saciedade precoce (p=0.031), disfunção sexual (p=0.049) e sudorese gustatória (p=0.018). No modelo de regressão logística binária, avaliando o diagnóstico de NAC como variável dependente, foi observado que apenas a FC em repouso, presença de neuropatia diabética sensitivo motora e retinopatia diabética foram consideradas variáveis independentes significativamente. A NAC é uma complicação crônica comum do DM1, atingindo cerca de 30% dos pacientes estudados e encontra-se associada à presença de outras complicações da doença. Indicadores da presença de NAC nos pacientes avaliados incluíram a idade, duração do diabetes, presença de HAS, frequência cardíaca de repouso e presença de sintomas sugestivos de neuropatia autonômica. O presente estudo ratifica a importância do rastreamento sistemático e precoce desta complicação.
Resumo:
Hereditary sensory autonomic neuropathy IV (HSAN IV) is an autosomal recessive disorder characterised by inability to feel pain and anhidrosis and is a consequence of defective NGF/TrkA signalling and growth of sensory and sympathetic neurons. Glucocortiocoid-induced tumour necrosis factors receptor (GITR), a transmembrane protein, activated by its specific ligand, GITRL, is well known for its role in the regulation of innate and acquired immune system responses. Recently, GITR was found to be required for NGF-dependant and extracellular signal-related kinase 1/2 (ERK1/2)-induced neurite growth and target innervation in the developing sympathetic nervous system (SNS). Given this novel role of GITR, it is possible that strategies targeting GITR have potential therapeutic benefit in promoting neurite growth in autonomic neuropathies such as HSAN IV. Using P1 mouse SCG neurons as a model, in addition to various SCG cell treatments, knock down models and transfection methods, we investigated whether GITR increases the sensitivity of sympathetic neurons to NGF; the region of GITR required for the enhancement of NGF-promoted growth, the signalling pathways downstream of GITR and how extensively GITR is involved in regulating peripheral innervation of the SNS. Results indicate that the region responsible for the growth promoting effects of GITR lies in its juxtamembrane intracellular region (here termed the growth promoting domain (GPD)) of GITR. The GPD of GITR activates ERK1/2 and inhibits nuclear factor kappa B (NF-κB) in an inverse fashion to provide an optimal cellular growth environment for P1 SCG neurons. While deleting the GPD of GITR had no effect on TrkA expression, constitutive phosphorylation of specific sites in the GPD reduced TrkA expression indicating a possible role for GITR in increasing the sensitivity of SCG neurons to NGF by the regulation of these sites, TrkA expression and subsequent NGF/TrkA binding. GITR appears to be heterogeneously required for NGF-promoted target innervation of SCG neurons in some organs, implying additional factors are involved in extensive NGF-target innervation of the SNS. In conclusion, this study answers basic biological questions regarding the molecular mechanism behind the role of GITR in the development of the SNS, and provides a basis for future research if GITR modulation is to be developed as a strategy for promoting axonal growth.
Resumo:
PR homology domain-containing member 12 (PRDM12) is a highly evolutionary conserved member of the Prdm family of transcription factors that play essential roles in many cell fate decisions. In human, PRDM12 coding mutations have been recently identified in several patients with hereditary sensory and autonomic neuropathy (HSAN) (submitted elsewhere). Here we show that PRDM12 is involved in sensory neurogenesis in Xenopus and that several of the human Prdm12 mutants show altered structure, subcellular localization and function. In Drosophila, we demonstrate that the sensory neuron specific RNAi knockdown of the Prdm12 ortholog Hamlet induces impaired nociception and that a similar phenotype is observed in hypomorph hamlet mutants. In human fibroblasts of patients with PRDM12 mutations, we identified additional possible downstream target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE). Knock-down of fly TRHDE in sensory neurons resulted in altered nociceptive neurons and impaired nociception. Collectively, these findings provide the first evidence showing that Prdm12 plays an important role in sensory neuron development. They also suggest that it has a critical evolutionarily conserved role in pain perception via modulation of the TRH signaling pathway.
Resumo:
OBJECTIVESTo determine whether skin-intrinsic fluorescence (SIF) is associated with long-term complications of type 1 diabetes (T1D) and, if so, whether it is independent of chronic glycemic exposure and previous intensive therapy.RESEARCH DESIGN AND METHODSWe studied 1,185 (92%) of 1,289 active Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) participants from 2010 to 2011. SIF was determined using a fluorescence spectrometer and related cross-sectionally to recently determined measures of retinopathy (stereo fundus photography), cardiac autonomic neuropathy (CAN; R-R interval), confirmed clinical neuropathy, nephropathy (albumin excretion rate [AER]), and coronary artery calcification (CAC).RESULTSOverall, moderately strong associations were seen with all complications, before adjustment for mean HbA1c over time, which rendered these associations nonsignificant with the exception of sustained AER >30 mg/24 h and CAC, which were largely unaffected by adjustment. However, when examined within the former DCCT treatment group, associations were generally weaker in the intensive group and nonsignificant after adjustment, while in the conventional group, associations remained significant for CAN, sustained AER >30 mg/24 h, and CAC even after mean HbA1c adjustment.CONCLUSIONSSIF is associated with T1D complications in DCCT\EDIC. Much of this association appears to be related to historical glycemic exposure, particularly in the previously intensively treated participants, in whom adjustment for HbA1c eliminates statistical significance.