111 resultados para Atoll
Resumo:
Digital maps of the coral reef ecosystem (<~30m deep) of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery. Digital Globe’s Quickbird II satellite images were acquired between 2004 and 2006 and georeferenced to within 1.6 m of their true positions. Reef ecosystem features were digitized directly into a GIS at a display scale of 1:4000 using a minimum feature size of 1000 square meters. Benthic features were categorized according to a classification scheme with attributes including zone (location, such as lagoon or forereef, etc.), structure (bottom type, such as sand or patch reef, etc.) and percent hard bottom. Ground validation of habitat features was conducted at 311 sites in 2009. Resulting maps consisted of 1829 features covering 366 square kilometers. Results demonstrate that reef zones occurred in a typical progression of narrow bands from offshore, though forereef, reef flat, shoreline, land, backreef, and lagoon habitats. Lagoon was the largest zone mapped and covered nearly 80% of the atoll, although much of it was too deep to have structures identified from the satellite imagery. Dominant habitat structures by area were pavement and aggregate reef, which covered 29% and 18% of the mapped structures, respectively. Based on the number of features, individual and aggregated patch reefs comprised over 40% of the features mapped. Products include GIS based maps, field videos and pictures, satellite imagery, PDF atlas, and this summary report. Maps and associated data can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications.
Resumo:
The United States Coral Reef Task Force (USCRTF) was established in 1998 by Presidential Executive Order 13089 to lead U.S. efforts to preserve and protect coral reef ecosystems. Current, accurate, and consistent maps greatly enhance efforts to preserve and manage coral reef ecosystems. With comprehensive maps and habitat assessments, coral reef managers can be more effective in designing and implementing a variety of conservation measures, including: • Long-term monitoring programs with accurate baselines from which to track changes; • Place-based conservation measures such as marine protected areas (MPAs); and • Targeted research to better understand the oceanographic and ecological processes affecting coral reef ecosystem health. The National Oceanic and Atmospheric Administration’s (NOAA) National Ocean Service (NOS) is tasked with leading the coral ecosystem mapping element of the U.S. Coral Reef Task Force (CRTF) under the authority of the Presidential Executive Order 13089 to map and manage the coral reefs of the United States.
Resumo:
Digital maps of the shallow (<~30m deep) coral reef ecosystems of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery acquired between 2004 and 2006. Reef ecosystem features were digitized directly into a Geographic Information System. Benthic features were categorized according to a classification scheme with attributes including zone (location such as lagoon or forereef, etc.), structure (bottom type such as sand or patch reef, etc.) and percent hard bottom. This atlas consists of 27 detailed maps displaying reef zone and structure of coral ecosystems around Majuro. Adjacent maps in the atlas overlap slightly to ensure complete coverage. Maps and associated products can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications. Maps are not to be used for navigation.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Clipperton Atoll (10°18'N, 109°13'W), lies within the eastern Pacific elongated warm water pool centered at 10°N and is situated at the boundary of the North Equatorial Counter-Current (NECC) and westward-flowing eddy currents moving away from Central America. ... Fifteen coral cores were collected from massive heads of Porites lobata in April 1994 for the purpose of reconstructing oceanographic and climatic conditions at this open ocean site in the eastern Pacific.
Resumo:
Present study consists the species diversity, abundance and community structure of ichthyofauna in the seagrass meadow of Minicoy Atoll, Lakshadweep Islands. Two hundred and three species of fishes were recorded during the study, from four stations in the Atoll. They belonged to 2 classes, 11orders, 43 families and 93 genera. Six species belonged to the class Chondreichthyes and 197 species to Osteichthyes. Family Pomacentridae showed maximum abundance of species (22%). Station I, having close proximity to the coral reefs, observed the maximum number of families (37) and species (129) and that with minimum number was in station II (23 families and 52 species). Bray-Curtis similarity plot showed a similarity range of 22 to 52%, seasonally. Station I showed highest Shannon-Wiener diversity index (H’log2) (4.22) during August and the lowest (2.91) during June. Stations I and III showed comparatively higher abundance and diversity of fishes. Variability in seagrass habitat structure and the interaction with coral reefs influenced the species composition and diversity of fishes in Minicoy Atoll. The findings of the present investigation can be used as baseline information for the fishery resource management of the region
Resumo:
Recent-past shoreline changes on reef islands are now subject to intensified monitoring via remote sensing data. Based on these data, rates of shoreline change calculated from long-term measurements (decadal) are often markedly lower than recent short-term rates (over a number of years). This observation has raised speculations about the growing influence of sea-level rise on reef island stability. This observation, however, can also be explained if we consider two basic principles of geomorphology and sedimentology. For Takú Atoll, Papua New Guinea, we show that natural shoreline fluctuations of dynamic reef islands have a crucial influence on the calculation of short-term rates of change. We analyze an extensive dataset of multitemporal shoreline change rates from 1943 to 2012 and find that differing rates between long- and short-term measurements consistently reflect the length of the observation interval. This relationship appears independent from the study era and indicates that reef islands were equally dynamic during the early periods of analysis, i.e. before the recent acceleration of sea-level rise. Consequently, we suggest that high rates of shoreline change calculated from recent short-term observations may simply result from a change in temporal scale and a shift from geomorphic equilibrium achieved over cyclic time towards an apparent disequilibrium during shorter periods of graded time. This new interpretation of short- and long-term shoreline change rates has important implications for the ongoing discussion about reef island vulnerability, showing that an observed jump from low to high rates of change may be independent from external influences, including but not limited to sea-level rise.