998 resultados para Atmospheric diffusion.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"February 15, 1956."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

"This research was performed under an agreement between the U.S. Weather Bureau and the U.S. Atomic Energy Commission."

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments on atmospheric two-stage fluidized bed drying of bovine intestines with heat pump were carried out. The investigation covers innovative fluidized bed heat pump drying of bovine intestines. The two-stage drying consists of atmospheric moisture sublimation immediately followed by evaporation. Studies were done to establish the influence of the drying condition on the drying characteristics and product quality of bovine intestines and properties focusing on kinetics, diffusion, and color. The investigation of the drying characteristics has been conducted during moisture removal by evaporation and combined sublimation and evaporation. The effect of drying temperature on the drying constants was determined by fitting the experimental data using regression analysis techniques. The investigation revealed that the drying kinetics is most significantly affected by temperature. Correlations expressing the drying constants and effective moisture diffusivity dependence on the drying conditions are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the material freezing points equipped with a continuous monitoring system. The investigation of the drying characteristics has been conducted in the temperature range -10~25oC and the airflow in the range 1.5~2.5 m/s. Some experiments were conducted as a single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air parameters on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitivity of the temperature. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range −10 to 25 ◦C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported. Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the dryingv for each trial. The determined Walli’s values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of long self-organized carbon connections (where the length is much greater than the diameter) between Ag nanoparticles on a Si(1 0 0) surface in atmospheric pressure Ar + CH4 microplasmas is demonstrated. A growth scenario explaining the connection nucleation and growth is proposed, and this is supported by numerical simulations which reveal that the electric field pattern around the growing connections affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization. Results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ag nanoparticles and Fe-coated Si micrograins were separately deposited onto Si(1 0 0) surfaces and then exposed to an Ar + CH4 microplasma at atmospheric pressure. For the Ag nanoparticles, self-organized carbon nanowires, up to 400 nm in length were produced, whereas for the Fe-coated Si micrograins carbon connections with the length up to 100 μm were synthesized on the plasma-exposed surface area of about 0.5 mm2. The experiment has revealed that long carbon connections and short nanowires demonstrate quite similar behavior and structure. While most connections/nanowires tended to link the nearest particles, some wires were found to 'dissolve' into the substrate without terminating at the second particle. Both connections and nanowires are mostly linear, but long carbon connections can form kinks which were not observed in the carbon nanowire networks. A growth scenario explaining the carbon structure nucleation and growth is proposed. Multiscale numerical simulations reveal that the electric field pattern around the growing connections/nanowires strongly affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization in the system. The results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research has been prompted by an interest in the atmospheric processes of hydrogen. The sources and sinks of hydrogen are important to know, particularly if hydrogen becomes more common as a replacement for fossil fuel in combustion. Hydrogen deposition velocities (vd) were estimated by applying chamber measurements, a radon tracer method and a two-dimensional model. These three approaches were compared with each other to discover the factors affecting the soil uptake rate. A static-closed chamber technique was introduced to determine the hydrogen deposition velocity values in an urban park in Helsinki, and at a rural site at Loppi. A three-day chamber campaign to carry out soil uptake estimation was held at a remote site at Pallas in 2007 and 2008. The atmospheric mixing ratio of molecular hydrogen has also been measured by a continuous method in Helsinki in 2007 - 2008 and at Pallas from 2006 onwards. The mean vd values measured in the chamber experiments in Helsinki and Loppi were between 0.0 and 0.7 mm s-1. The ranges of the results with the radon tracer method and the two-dimensional model were 0.13 - 0.93 mm s-1 and 0.12 - 0.61 mm s-1, respectively, in Helsinki. The vd values in the three-day campaign at Pallas were 0.06 - 0.52 mm s-1 (chamber) and 0.18 - 0.52 mm s-1 (radon tracer method and two-dimensional model). At Kumpula, the radon tracer method and the chamber measurements produced higher vd values than the two-dimensional model. The results of all three methods were close to each other between November and April, except for the chamber results from January to March, while the soil was frozen. The hydrogen deposition velocity values of all three methods were compared with one-week cumulative rain sums. Precipitation increases the soil moisture, which decreases the soil uptake rate. The measurements made in snow seasons showed that a thick snow layer also hindered gas diffusion, lowering the vd values. The H2 vd values were compared to the snow depth. A decaying exponential fit was obtained as a result. During a prolonged drought in summer 2006, soil moisture values were lower than in other summer months between 2005 and 2008. Such conditions were prevailing in summer 2006 when high chamber vd values were measured. The mixing ratio of molecular hydrogen has a seasonal variation. The lowest atmospheric mixing ratios were found in the late autumn when high deposition velocity values were still being measured. The carbon monoxide (CO) mixing ratio was also measured. Hydrogen and carbon monoxide are highly correlated in an urban environment, due to the emissions originating from traffic. After correction for the soil deposition of H2, the slope was 0.49±0.07 ppb (H2) / ppb (CO). Using the corrected hydrogen-to-carbon-monoxide ratio, the total hydrogen load emitted by Helsinki traffic in 2007 was 261 t (H2) a-1. Hydrogen, methane and carbon monoxide are connected with each other through the atmospheric methane oxidation process, in which formaldehyde is produced as an important intermediate. The photochemical degradation of formaldehyde produces hydrogen and carbon monoxide as end products. Examination of back-trajectories revealed long-range transportation of carbon monoxide and methane. The trajectories can be grouped by applying cluster and source analysis methods. Thus natural and anthropogenic emission sources can be separated by analyzing trajectory clusters.