886 resultados para Ascertainment bias
Resumo:
The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population genomic studies in the wild.
Resumo:
Recent improvements in the speed, cost and accuracy of next generation sequencing are revolutionizing the discovery of single nucleotide polymorphisms (SNPs). SNPs are increasingly being used as an addition to the molecular ecology toolkit in nonmodel organisms, but their efficient use remains challenging. Here, we discuss common issues when employing SNP markers, including the high numbers of markers typically employed, the effects of ascertainment bias and the inclusion of nonneutral loci in a marker panel. We provide a critique of considerations specifically associated with the application and population genetic analysis of SNPs in nonmodel taxa, focusing specifically on some of the most commonly applied methods.
Resumo:
There is great interest in using amplified fragment length polymorphism (AFLP) markers because they are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that have a wide coverage of species genotnes. Several statistical methods have been proposed to study the genetic structure using AFLP's but they assume Hardy-Weinberg equilibrium and do not estimate the inbreeding coefficient, F-IS. A Bayesian method has been proposed by Holsinger and colleagues that relaxes these simplifying assumptions but we have identified two sources of bias that can influence estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii) the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new method estimates population-specific F-IS and F-ST values and offers users the possibility of taking into account the criteria for selecting the markers that are used in the analyses. The software is available at our web site (http://www-leca.uif-grenoble.fi-/logiciels.htm). Finally, we provide advice on how to avoid the effects of ascertainment bias.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Molecular data are now widely used in epidemiological studies to investigate the transmission, distribution, biology, and diversity of pathogens. Our objective was to establish recommendations to support good scientific reporting of molecular epidemiological studies to encourage authors to consider specific threats to valid inference. The statement Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID) builds upon the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative. The STROME-ID statement was developed by a working group of epidemiologists, statisticians, bioinformaticians, virologists, and microbiologists with expertise in control of infection and communicable diseases. The statement focuses on issues relating to the reporting of epidemiological studies of infectious diseases using molecular data that were not addressed by STROBE. STROME-ID addresses terminology, measures of genetic diversity within pathogen populations, laboratory methods, sample collection, use of molecular markers, molecular clocks, timeframe, multiple-strain infections, non-independence of infectious-disease data, missing data, ascertainment bias, consistency between molecular and epidemiological data, and ethical considerations with respect to infectious-disease research. In total, 20 items were added to the 22 item STROBE checklist. When used, the STROME-ID recommendations should advance the quality and transparency of scientific reporting, with clear benefits for evidence reviews and health-policy decision making.
Resumo:
This study examined the genetic and environmental relationships among 5 academic achievement skills of a standardized test of academic achievement, the Queensland Core Skills Test (QCST; Queensland Studies Authority, 2003a). QCST participants included 182 monozygotic pairs and 208 dizygotic pairs (mean 17 years +/- 0.4 standard deviation). IQ data were included in the analysis to correct for ascertainment bias. A genetic general factor explained virtually all genetic variance in the component academic skills scores, and accounted for 32% to 73% of their phenotypic variances. It also explained 56% and 42% of variation in Verbal IQ and Performance IQ respectively, suggesting that this factor is genetic g. Modest specific genetic effects were evident for achievement in mathematical problem solving and written expression. A single common factor adequately explained common environmental effects, which were also modest, and possibly due to assortative mating. The results suggest that general academic ability, derived from genetic influences and to a lesser extent common environmental influences, is the primary source of variation in component skills of the QCST.
Resumo:
Detection and interpretation of adverse signals during preclinical and clinical stages of drug development inform the benefit-risk assessment that determines suitability for use in real-world situations. This review considers some recent signals associated with diabetes therapies, illustrating the difficulties in ascribing causality and evaluating absolute risk, predictability, prevention, and containment. Individual clinical trials are necessarily restricted for patient selection, number, and duration; they can introduce allocation and ascertainment bias and they often rely on biomarkers to estimate long-term clinical outcomes. In diabetes, the risk perspective is inevitably confounded by emergent comorbid conditions and potential interactions that limit therapeutic choice, hence the need for new therapies and better use of existing therapies to address the consequences of protracted glucotoxicity. However, for some therapies, the adverse effects may take several years to emerge, and it is evident that faint initial signals under trial conditions cannot be expected to foretell all eventualities. Thus, as information and experience accumulate with time, it should be accepted that benefit-risk deliberations will be refined, and adjustments to prescribing indications may become appropriate. © 2013 by the American Diabetes Association.
Resumo:
BACKGROUND: Most information about the lifetime prevalence of mental disorders comes from retrospective surveys, but how much these surveys have undercounted due to recall failure is unknown. We compared results from a prospective study with those from retrospective studies. METHOD: The representative 1972-1973 Dunedin New Zealand birth cohort (n=1037) was followed to age 32 years with 96% retention, and compared to the national New Zealand Mental Health Survey (NZMHS) and two US National Comorbidity Surveys (NCS and NCS-R). Measures were research diagnoses of anxiety, depression, alcohol dependence and cannabis dependence from ages 18 to 32 years. RESULTS: The prevalence of lifetime disorder to age 32 was approximately doubled in prospective as compared to retrospective data for all four disorder types. Moreover, across disorders, prospective measurement yielded a mean past-year-to-lifetime ratio of 38% whereas retrospective measurement yielded higher mean past-year-to-lifetime ratios of 57% (NZMHS, NCS-R) and 65% (NCS). CONCLUSIONS: Prospective longitudinal studies complement retrospective surveys by providing unique information about lifetime prevalence. The experience of at least one episode of DSM-defined disorder during a lifetime may be far more common in the population than previously thought. Research should ask what this means for etiological theory, construct validity of the DSM approach, public perception of stigma, estimates of the burden of disease and public health policy.
Resumo:
Loss to follow-up (LTFU) is a common problem in many epidemiological studies. In antiretroviral treatment (ART) programs for patients with human immunodeficiency virus (HIV), mortality estimates can be biased if the LTFU mechanism is non-ignorable, that is, mortality differs between lost and retained patients. In this setting, routine procedures for handling missing data may lead to biased estimates. To appropriately deal with non-ignorable LTFU, explicit modeling of the missing data mechanism is needed. This can be based on additional outcome ascertainment for a sample of patients LTFU, for example, through linkage to national registries or through survey-based methods. In this paper, we demonstrate how this additional information can be used to construct estimators based on inverse probability weights (IPW) or multiple imputation. We use simulations to contrast the performance of the proposed estimators with methods widely used in HIV cohort research for dealing with missing data. The practical implications of our approach are illustrated using South African ART data, which are partially linkable to South African national vital registration data. Our results demonstrate that while IPWs and proper imputation procedures can be easily constructed from additional outcome ascertainment to obtain valid overall estimates, neglecting non-ignorable LTFU can result in substantial bias. We believe the proposed estimators are readily applicable to a growing number of studies where LTFU is appreciable, but additional outcome data are available through linkage or surveys of patients LTFU. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).