978 resultados para Aquifer pollution
Pollution by hexachlorobenzene and pentachlorophenol in the coastal plain of São Paulo state, Brazil
Resumo:
Organochlorine compounds were dumped by chemical industries during the 1970s in many areas of the coastal plain of São Paulo state in Brazil. These dumps, located on hillsides and in valleys, in both rural and urban environments, are responsible for soil and water pollution. The objective of this work was to determine how the pollutants have spread in an area occupied by a spodosol-type soil mantle. The study combines soil morphological observations with soil and water analysis of hexachlorobenzene (HCB) and pentachlorophenol (PCP) in soil toposequences. The results indicate that the highest pollutant concentrations are observed near the dump site and that the compounds contamination is increasing. A map integrating topography and chemical concentrations was created to visualize the spatial distribution of HCB levels in the landscape. Physical and chemical analyses were performed to measure HCB and PCP levels in the soil. Soil water appears to act as a vector of HCB, probably through complexation with and dispersal of dissolved organic matter. The persistence of HCB at the studied site is most likely due to the low pH values in combination with a high content of organic matter. HCB was consistently found in higher concentrations than PCP. It is plausible that the cause of this difference is that PCP is degraded more easily under sunlight than HCB and that degradation of PCP under acid conditions leads to the formation of HCB. © 2003 Published by Elsevier B.V.
Resumo:
The radioactivity due to 238U and 234U in three aquifer systems occurring within the Paraná sedimentary basin, South America, has been investigated. Uranium is much less dissolved from fractured igneous rocks than from the porous sedimentary rocks as indicated by the U-mobility coefficients between 7. 6 × 10-6 and 1. 2 × 10-3 g cm-3. These values are also compatible with the U preference ratios relative to Na, K, Ca, Mg and SiO2, which showed that U is never preferentially mobilized in the liquid phase during the flow occurring in cracks, fissures, fractures and faults of the igneous basaltic rocks. Experimental dissolution of diabase grains on a time-scale laboratory has demonstrated that the U dissolution appeared to be a two-stage process characterized by linear and second-order kinetics. The U dissolution rate was 8 × 10-16 mol m-2 s-1 that is within the range of 4 × 10-16-3 × 10-14 mol m-2 s-1 estimated for other rock types. The 234U/238U activity ratio of dissolved U in solutions was higher than unity, a typical result expected during the water-rock interactions when preferential 234U-leach from the rock surfaces takes place. Some U-isotopes data allowed estimating 320 ka for the groundwater residence time in a sector of a transect in São Paulo State. A modeling has been also realized considering all U-isotopes data obtained in Bauru (35 samples), Serra Geral (16 samples) and Guarani (29 samples) aquifers. The results indicated that the Bauru aquifer waters may result from the admixture of waters from Guarani (1. 5 %) and Serra Geral (98. 5 %) aquifers. © 2012 Springer-Verlag.
Resumo:
One of the most important natural resources for sustaining human life, water, has been losing the basic requirements of quality and quantity sufficient enough to attend the population due to water contamination'problems, often caused by human beings themselves. Because of this, the sources of this resource are often located in remote places of the natural environment to ensure the quality of the water. However, when urban expansion began to occupy these areas, which were once regarded as distant, environmental pollution problems began to occur due to occupation of the land without planning. Based on this occurrence, this study aims to propose environmental zoning for the Maxaranguape river watershed in order to protect its water resources. This is important because this river can serve as a source of supply for the metropolitan area of Natal, the capital of Rio Grande do Norte. In accordance to this proposition, the model of natural soil loss vulnerability (CREPANI et al., 2001), the model of aquifer pollution vulnerability (FOSTER et al., 2006), and the legal incompatibility map (CREPANI et al., 2001) were used to delimit the zones. All this was done with Geographic Information System (GIS) and also created a geographic database update of the basin. The results of the first model mentioned indicated that 63.67% of the basin was classified as moderately stable / vulnerable, 35.66% as moderately vulnerable, and 0.67% as vulnerable. The areas with high vulnerability degree correspond with sand dunes and river channels areas. The second model indicated that 2.84% of the basin has low vulnerability, 70.27%) has median vulnerability, and 26.76% and 0.13% has high vulnerability and extreme vulnerability, respectively. The areas with the highest vulnerability values also refer to part of the sand dunes and river channels besides other areas such as Pureza urban area. The legal incompatibility map indicated that the basin has 85.02 km2 of Permanent Protection Area (PPA) and 14.62% of this area has some incongruity of use. Based on these results it was possible to draw three main zones: Protection and Sustainable Use Zone (PSUZ), Protection and Environmental Restoration Zone (PERZ) and Environmental Control Zone, which are divided into A, B and C. The PSUZ refer to the coastal areas of the basin, where the sand dunes are located. These sites should be areas of environmental protection and of sustainable urban expansion. The ZPRA refer to river channels, which are in high need of rehabilitation. The third zone corresponds to the rest of the basin which should have, in general, the mapping of possible sources of contamination for further control on the use and occupation of the river
Resumo:
The Ji-Paraná city (RO) it doesn't possess public system of collection and treatment of sewers, being the waters residuárias produced by the local population thrown at sewages. Traditionally, many inhabitants use wells amazon extracted underground water or tubular shallow in the urban zone. The study accomplished in the Nova Brasília neighborhood for Silva (2009) revealed that the local aquifer is strongly contaminated for nitrate, originated of the decomposition of the organic matter deposited at the sewages local maidservants. With the objective of detecting areas with high concentrations originating from organic compositions of septic sewages, geophysical risings were accomplished, later related with analyses physical-chemistries in samples of groundwaters obtained in several wells installed in the Nova Brasília neighborhood, besides of soil samples descriptions in zone not saturated obtained in wells. The results obtained by the geophysical rehearsals they reveal that the polluting feather not migrates through the zone saturated, arriving with relative easiness to the aquifer, reaching in some points, superior depth to 34 m reached by the geoelectrical profiling.
Resumo:
The carbonate outcrops of the anticline of Monte Conero (Italy) were studied in order to characterize the geometry of the fractures and to establish their influence on the petrophysical properties (hydraulic conductivity) and on the vulnerability to pollution. The outcrops form an analog for a fractured aquifer and belong to the Maiolica Fm. and the Scaglia Rossa Fm. The geometrical properties of fractures such as orientation, length, spacing and aperture were collected and statistically analyzed. Five types of mechanical fractures were observed: veins, joints, stylolites, breccias and faults. The types of fractures are arranged in different sets and geometric assemblages which form fracture networks. In addition, the fractures were analyzed at the microscale using thin sections. The fracture age-relationships resulted similar to those observed at the outcrop scale, indicating that at least three geological episodes have occurred in Monte Conero. A conceptual model for fault development was based on the observations of veins and stylolites. The fracture sets were modelled by the code FracSim3D to generate fracture network models. The permeability of a breccia zone was estimated at microscale by and point counting and binary image methods, whereas at the outcrop scale with Oda’s method. Microstructure analysis revealed that only faults and breccias are potential pathways for fluid flow since all veins observed are filled with calcite. According this, three scenarios were designed to asses the vulnerability to pollution of the analogue aquifer: the first scenario considers the Monte Conero without fractures, second scenario with all observed systematic fractures and the third scenario with open veins, joints and faults/breccias. The fractures influence the carbonate aquifer by increasing its porosity and hydraulic conductivity. The vulnerability to pollution depends also on the presence of karst zones, detric zones and the material of the vadose zone.
Resumo:
The vulnerability to pollution and hydrochemical variation of groundwater in the mid-west karstic lowlands of Ireland were investigated from October 1992 to September 1993, as part of an EU STRIDE project at Sligo Regional Technical College. Eleven springs were studied in the three local authority areas of Co. Galway, Co. Mayo, and Co. Roscommon. Nine of the springs drain locally or regionally important karstic aquifers and two drain locally important sand and gravel aquifers. The maximum average daily discharge of any of the springs was 16,000 m3/day. Determination of the vulnerability of groundwater to pollution relies heavily on an examination of subsoil deposits in an area since they can act as a protecting or filtering layer over groundwater. Within aquifers/spring catchments, chemical reactions such as adsorption, solution-precipitation or acid-base reactions occur and modify the hydrochemistry of groundwater (Lloyd and Heathcote, 1985). The hydrochemical processes) that predominate depend cm the mineralogy of the aquifer, the hydrogeological environment, the overlying subsoils, and the history of groundwater movement. The aim of this MSc research thesis was to investigate the hydrochemical variation of spring outflow and to assess the relationship between these variations and the intrinsic vulnerability of the springs and their catchments. If such a relationship can be quantified, then it is hoped that the hydrochemical variation of a spring may indicate the vulnerability of a spring catchment without the need for determining it by field mapping. Such a method would be invaluable to any of the three local authorities since they would be able to prioritise sources that are most at risk from pollution, using simple techniques of chemical sampling, and statistical analysis. For each spring a detailed geological, hydrogeological and hydrochemical study was carried out. Individual catchment areas were determined with a water balance/budget and groundwater tracing. The subsoils geology for each spring catchment were mapped at the 1:10,560 scale and digitised to the 1:25,000 scale with AutoCad™ and Arclnfo™. The vulnerability of each spring was determined using the Geological Survey's vulnerability guidelines. Field measurements and laboratory based chemistry analyses of the springs were undertaken by personnel from both the EPA Regional Laboratory in Castlebar, Co. Mayo, and the Environment Section of Roscommon Co. Council. Electrical conductivity and temperature (°C) were sampled fortnightly, in the field, using a WTW microprocessor conductivity meter. A percentage (%) vulnerability was applied to each spring in order to indicate the areal extent of the four main classes of vulnerability (Extreme, High, Moderate, and Low) which occurred within the confines of each spring catchment. Hydrochemical variation for the springs were presented as the coefficient of variation of electrical conductivity. The results of this study show that a clear relationship exists between the degree of vulnerability of each catchment area as defined by the subsoil cover and the coefficient of variation of EC, with the coefficient of variation increasing as the vulnerability increases. The coefficient of variation of electrical conductivity is considered to be a parameter that gives a good general reflection of the degree of vulnerability occurring in a spring catchment in Ireland's karstic lowlands.
Resumo:
Groundwater from 60 pumped tubular wells of the Botucatu-Piramboia aquifer system located at the Parana sedimentary basin in Brazil were chemically analysed with the aim of evaluating if the mechanisms related to the migration of uranium can generate concentrations greater than the maximum permissible limit in drinking water, as defined by the Brazilian national standards.
Resumo:
The Guarani aquifer system (GAS) represents one of the biggest aquifers in the world and is the most relevant groundwater resource in South America. For the first time, by combining field and laboratory measurements, a high-resolution aquifer analog model of fluvial-aeolian sediments of the GAS in São Paulo State (Brazil) is constructed. Three parallel sections of frontal outcrops, 28 m × 5.8 m, and two parallel sections of lateral outcrops, 7 m × 5.8 m, are recorded during open-pit mining of sandy sediments and describe in detail the three-dimensional distribution of the local lithofacies and hydrofacies. Variations of hydraulic conductivity, K, and porosity, n, are resolved on the centimeter scale, and the most permeable units of the fluvial-aeolian facies association are identified. The constructed aquifer analog model shows moderate hydraulic heterogeneity and a mean K value of 1.36 × 10-4 m/s, which is greater than the reported range of K values for the entire GAS in São Paulo State. The results suggest that the examined sedimentary unit constitutes a relevant portion of the GAS in São Paulo State in the context of groundwater extraction and pollution. Moreover, the constructed aquifer analog is considered an ideal basis for future numerical model experiments, aiming at in-depth understanding of the groundwater flow and contaminant transport patterns at this GAS portion or at comparable fluvial-aeolian facies associations. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Groundwater represents one of the most important resources of the world and it is essential to prevent its pollution and to consider remediation intervention in case of contamination. According to the scientific community the characterization and the management of the contaminated sites have to be performed in terms of contaminant fluxes and considering their spatial and temporal evolution. One of the most suitable approach to determine the spatial distribution of pollutant and to quantify contaminant fluxes in groundwater is using control panels. The determination of contaminant mass flux, requires measurement of contaminant concentration in the moving phase (water) and velocity/flux of the groundwater. In this Master Thesis a new solute flux mass measurement approach, based on an integrated control panel type methodology combined with the Finite Volume Point Dilution Method (FVPDM), for the monitoring of transient groundwater fluxes, is proposed. Moreover a new adsorption passive sampler, which allow to capture the variation of solute concentration with time, is designed. The present work contributes to the development of this approach on three key points. First, the ability of the FVPDM to monitor transient groundwater fluxes was verified during a step drawdown test at the experimental site of Hermalle Sous Argentau (Belgium). The results showed that this method can be used, with optimal results, to follow transient groundwater fluxes. Moreover, it resulted that performing FVPDM, in several piezometers, during a pumping test allows to determine the different flow rates and flow regimes that can occurs in the various parts of an aquifer. The second field test aiming to determine the representativity of a control panel for measuring mass flus in groundwater underlined that wrong evaluations of Darcy fluxes and discharge surfaces can determine an incorrect estimation of mass fluxes and that this technique has to be used with precaution. Thus, a detailed geological and hydrogeological characterization must be conducted, before applying this technique. Finally, the third outcome of this work concerned laboratory experiments. The test conducted on several type of adsorption material (Oasis HLB cartridge, TDS-ORGANOSORB 10 and TDS-ORGANOSORB 10-AA), in order to determine the optimum medium to dimension the passive sampler, highlighted the necessity to find a material with a reversible adsorption tendency to completely satisfy the request of the new passive sampling technique.
Resumo:
Groundwater represents the most important raw material. Germany struggles to maintain the best water quality possible by providing advanced monitoring systems and legal measures to prevent further pollution. In areas involved in the intensive growing of plantations, one of the major contamination factors derives from nitrate. The aim of this master thesis is the characterisation of the Water Protection Area of Bremen (Germany). Denitrification is a natural process, representing the best means of natural reduction of the hazardous nitrate ion, which is dangerous both for human health and for the development of eutrophication. The study has been possible thanks to the collaboration with the University of Bremen, the Geological Service of Bremen (GDfB) and Peter Spiedt (Water Supply Company of Bremen). It will be defined whether nitrate amounts in the groundwater still overcome the threshold legally imposed, and state if the denitrification process takes place, thanks to new samples collected in 2015 and their integration with historical data. Gas samples have been gathered to test them with the “N2/Ar method”, which is able to estimate the denitrification rate quantitatively. Analyses stated the effective occurrence of the reaction, nevertheless showing that it only affects the chemical of the deep aquifers and not shallow ones. Temporal trends concentrations of nitrate have shown that no real improvement took place in the past years. It will be commented that despite the denitrification being responsible for an efficacious lowering in the nitrate ion, it needs reactive materials to take place. Since the latter are finite elements, it is not an endless process. It is thus believed that is clearly necessary to adopt a better attitude in order to maintain the best chemical qualities possible in such an important area, providing drinking water.
Resumo:
"HWRIC project number 87-034."
Resumo:
Continuous and reliable monitoring of contaminants in drinking water, which adversely affect human health, is the main goal of the Broward County Well Field Protection Program. In this study the individual monitoring station locations were used in a yearly and quarterly spatiotemporal Ordinary Kriging interpolation to create a raster network of contaminant detections. In the final analysis, the raster spatiotemporal nitrate concentration trends were overlaid with a pollution vulnerability index to determine if the concentrations are influenced by a set of independent variables. The pollution vulnerability factors are depth to water, recharge, aquifer media, soil, impact to vadose zone, and conductivity. The creation of the nitrate raster dataset had an average RMS Standardized error close to 1 at 0.98. The greatest frequency of detections and the highest concentrations are found in the months of April, May, June, July, August, and September. An average of 76.4% of the nitrate intersected with cells of the pollution vulnerability index over 100.
Resumo:
The objective of the study is to evaluate the effect of the daily variation in concentrations of fine particulate matter (diameter less than 2.5µm - PM2.5) resulting from the burning of biomass on the daily number of hospitalizations of children and elderly people for respiratory diseases, in Alta Floresta and Tangará da Serra in the Brazilian Amazon in 2005. This is an ecological time series study that uses data on daily number of hospitalizations of children and the elderly for respiratory diseases, and estimated concentration of PM2.5. In Alta Floresta, the percentage increases in the relative risk (%RR) of hospitalization for respiratory diseases in children were significant for the whole year and for the dry season with 3-4 day lags. In the dry season these measurements reach 6% (95%CI: 1.4-10.8). The associations were sig-nificant for moving averages of 3-5 days. The %RR for the elderly was significant for the current day of the drought, with a 6.8% increase (95%CI: 0.5-13.5) for each additional 10µg/m3 of PM2.5. No as-sociations were verified for Tangara da Serra. The PM2.5 from the burning of biomass increased hospitalizations for respiratory diseases in children and the elderly.
Resumo:
BACKGROUND: The findings of prior studies of air pollution effects on adverse birth outcomes are difficult to synthesize because of differences in study design. OBJECTIVES: The International Collaboration on Air Pollution and Pregnancy Outcomes was formed to understand how differences in research methods contribute to variations in findings. We initiated a feasibility study to a) assess the ability of geographically diverse research groups to analyze their data sets using a common protocol and b) perform location-specific analyses of air pollution effects on birth weight using a standardized statistical approach. METHODS: Fourteen research groups from nine countries participated. We developed a protocol to estimate odds ratios (ORs) for the association between particulate matter <= 10 mu m in aerodynamic diameter (PM(10)) and low birth weight (LBW) among term births, adjusted first for socioeconomic status (SES) and second for additional location-specific variables. RESULTS: Among locations with data for the PM(10) analysis, ORs estimating the relative risk of term LBW associated with a 10-mu g/m(3) increase in average PM(10) concentration during pregnancy, adjusted for SES, ranged from 0.63 [95% confidence interval (CI), 0.30-1.35] for the Netherlands to 1.15 (95% CI, 0.61-2.18) for Vancouver, with six research groups reporting statistically significant adverse associations. We found evidence of statistically significant heterogeneity in estimated effects among locations. CONCLUSIONS: Variability in PM(10)-LBW relationships among study locations remained despite use of a common statistical approach. A more detailed meta-analysis and use of more complex protocols for future analysis may uncover reasons for heterogeneity across locations. However, our findings confirm the potential for a diverse group of researchers to analyze their data in a standardized way to improve understanding of air pollution effects on birth outcomes.
Resumo:
BACKGROUND: Ambient levels of air pollution may affect the health of children, as indicated by studies of infant and perinatal mortality. Scientific evidence has also correlated low birth weight and preterm birth, which are important determinants of perinatal death, with air pollution. However, most of these studies used ambient concentrations measured at monitoring sites, which may not consider differential exposure to pollutants found at elevated concentrations near heavy-traffic roadways. OBJECTIVES: Our goal was to examine the association between traffic-related pollution and perinatal mortality. METHODS: We used the information collected for a case-control study conducted in 14 districts in the City of Sao Paulo, Brazil, regarding risk factors for perinatal deaths. We geocoded the residential addresses of cases (fetal and early neonatal deaths) and controls (children who survived the 28th day of life) and calculated a distance-weighted traffic density (DWTD) measure considering all roads contained in a buffer surrounding these homes. RESULTS: Logistic regression revealed a gradient of increasing risk of early neonatal death with higher exposure to traffic-related air pollution. Mothers exposed to the highest quartile of the DWTD compared with those less exposed exhibited approximately 50% increased risk (adjusted odds ratio = 1.47; 95% confidence interval, 0.67-3.19). Associations for fetal mortality were less consistent. CONCLUSIONS: These results suggest that motor vehicle exhaust exposures may be a risk factor for perinatal mortality.