879 resultados para Aqueous-solutions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effectiveness of using thermally activated hydrotalcite materials has been investigated for the removal of arsenate, vanadate, and molybdate in individual and mixed solutions. Results show that increasing the Mg,Al ratio to 4:1 causes an increase in the percentage of anions removed from solution. The order of affinity of the three anions analysed in this investigation is arsenate, vanadate, and molybdate. By comparisons with several synthetic hydrotalcite materials, the hydrotalcite structure in the seawater neutralised red mud (SWN-RM) has been determined to consist of magnesium and aluminium with a ratio between 3.5:1 and 4:1. Thermally activated seawater neutralised red mud removes at least twice the concentration of anionic species than thermally activated red mud alone, due to the formation of 40 to 60 % Bayer hydrotalcite during the neutralisation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The removal of toxic anions has been achieved using hydrotalcite via two methods: (1) coprecipitation and (2) thermal activation. Hydrotalcite formed via the coprecipitation method, using solutions containing arsenate and vanadate up to pH 10, are able to remove more than 95% of the toxic anions (0.2 M) from solution. The removal of toxic anions in solutions with a pH of >10 reduces the removal uptake percentage to 75%. Raman spectroscopy observed multiple A1 stretching modes of V−O and As−O at 930 and 810 cm−1, assigned to vanadate and arsenate, respectively. Analysis of the intensity and position of the A1 stretching modes helped to identify the vanadate and arsenate specie intercalated into the hydrotalcite structure. It has been determined that 3:1 hydrotalcite structure predominantly intercalate anions into the interlayer region, while the 2:1 and 4:1 hydrotalcite structures shows a large portion of anions being removed from solution by adsorption processes. Treatment of carbonate solutions (0.2 M) containing arsenate and vanadate (0.2 M) three times with thermally activated hydrotalcite has been shown to remove 76% and 81% of the toxic anions, respectively. Thermally activated hydrotalcite with a Mg:Al ratio of 2:1, 3:1, and 4:1 have all been shown to remove 95% of arsenate and vanadate (25 ppm). At increased concentrations of arsenate and vanadate, the removal uptake percentage decreased significantly, except for the 4:1 thermally activated hydrotalcite. Thermally activated Bayer hydrotalcite has also been shown to be highly effective in the removal of arsenate and vanadate. The thermal activation of the solid residue component (red mud) removes 30% of anions from solution (100 ppm of both anions), while seawater-neutralized red mud removes 70%. The formation of hydrotalcite during the seawater neutralization process removes anions via two mechanisms, rather than one observed for thermally activated red mud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

129I is a radioactive isotope of iodine that is readily absorbed by the body. In this paper we investigated the potential of a 3:1 Zn/Al layered double hydroxide (LDH) as a sorbent for the removal of iodine and iodide from water. Synthetic Zn6Al2(OH)16(CO3)∙4H2O was prepared by the co-precipitation before thermal activation. The LDH was treated with solutions containing iodide and iodine. It was found that iodine could be more easily removed from solution than iodide. Powder X-ray diffraction revealed the destruction of the LDH structure during thermal activation and the successful reformation of a similar LDH material after treatment with the iodide or iodine solution. Thermal decomposition of all samples studied by thermogravimetry appeared to be similar. A new decomposition mechanism similar to one previously described in the literature was proposed for the Zn/Al LDH. The total mass loss of samples treated with iodide and iodine was significantly lower than that of the original LDH indicating that iodine species may form non-removable anions when intercalated into the LDH structure. Evolved gas mass spectrometry failed to detect any iodine species lost as gases during the decomposition of iodide treated LDH however, small quantities of iodine species were observed during decomposition of samples treated with iodine solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI /diatomite composites were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI /diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesized nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilizing nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N@N, N@H stretching vibrations and S@O, SO_ 3 group respectively, which are considered as marks to assess MO_ ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MOLDH displayed a ‘‘honey-comb’’ like structure, with the adjacent layers expanded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-angle neutron scattering (SANS) measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(3)-N+ (CH3)(2)C16H33 2Br(-) dimeric surfactant, referred to as 16-3-16, at different concentrations and temperatures, are reported. It is seen that micelles are disc-like for concentrations C = 2.5 and 10 mM at temperature T = 30 degrees C. At low concentration C = 0.5 mM micelles are rod-like. Similarly, there is a disc to rod-like transition of micelles on increasing the temperature. For C = 2.5 mM, micelles are rod-like at T = 45 and 70 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendrite structures of ice produced on undirectional solidification of ternary and quaternary aqueous solutions have been studied. Upon freezing, solutions containing more than one solute produce plate-shaped dendrites of ice. The spacing between dendrites increase linearly with the distance from the chill surface and the square root of local solidification time (or square root of inverse freezing rate) for any fixed composition. For fixed freezing conditions, the dendrite spacings from multicomponent aqueous solutions were a function of the concentrations and diffusion coefficients of the individual solutes. The dendrite spacing produced by freezing of a solution was changed by the addition of a solute different from those already present. If the main diffusion coefficient of the added solute is higher than that of solutes already present, the dendrite spacing is increased and vice versa. The dendrite spacing in multi-component systems increases with the total solute concentration if the constituent solutes are present in equal amounts. The dendrite spacing obtained on freezing of these dilute multicomponent solutions can be expressed by regression equations of the type Image Full-size image (2K) where L is the dendrite spacing in microns, C1, C2 and C3 are concentrations of individual solutes, Θf is the total freezing time and A1 −A8 are constants. A Yates analysis of the dendrite spacings in a factorial design of quaternary solutions indicates that there are strong interactions between individual solutes in regard to their effect on the dendrite spacings. A mass transport analysis has been used to calculate the interdendritic supersaturation ΔC of the individual solutes, the supercooling in the interdendritic liquid ΔT, and the transverse growth velocity of the dendrites, VT. In ternary solutions if two solutes are present in equal amount the supersaturation of the solute with higher main diffusion coefficient is lower, and vice versa. If a solute with higher main diffusion coefficient is added to a binary solution, the interface growth velocity, the interdendritic supersaturation of the base solute and the interdendritic supercooling increase with the quantity of solute added.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.