987 resultados para Antibacterial drug


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC50 values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract There is considerable interest in developing medical devices that provide controlled delivery of biologically active agents, for example, to reduce the incidence of device-related infection. Silicone elastomers are one of the commonest biomaterials used in medical device production. However, they have a relatively high coefficient of friction and the resulting lack of lubricity can cause pain and tissue damage on device insertion and removal. Novel silicone cross-linking agents have recently been reported that produce inherently ‘self-lubricating’ silicone elastomers with very low coefficients of friction. In this study, the model antibacterial drug metronidazole has been incorporated into these self-lubricating silicone elastomers to produce a novel bioactive biomaterial. The in vitro release characteristics of the bioactive component were evaluated as a function of cross-linker composition and drug loading. Although conventional matrix-type release kinetics were observed for metronidazole from the silicone systems, it was also observed that increasing the concentration of the cross-linking agent responsible for the lubricious character (tetra(oleyloxy)silane) relative to that of the standard non-lubricious cross-linking agent (tetrapropoxysilane) produced an increase in the metronidazole flux rate by up to 65% for a specified drug loading. The results highlight the potential for developing lubricious silicone medical devices with enhanced drug release characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster presented at the 44th ESCP Symposium on Clinical Pharmacy. Lisbon, 28-30 October 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess Pharmacists’ Perceptions and Experiences of Topical Antibacterial Drug Dispensing in Community Pharmacy Setting in Kedah State, Malaysia in order to minimize drug resistance issues. Methods: A cross-sectional study involving a pre-validated questionnaire was conducted in community pharmacies within Kedah State, Malaysia. Descriptive statistics and Spearman’s correlation coefficient were used for data analysis. The collected were analysed using statistical package for social sciences (SPSS) version 18.0. Results: The result shows that, 53.4 % of CPs in Kedah State perceived that topical antibacterial is not necessary for every topical bacterial infection. Fusidic acid was the most frequently dispensed topical antibacterial drug while superficial wound was reported to be the most frequently encountered topical bacterial infection. CPs (12.60 %) encountered antibacterial resistance cases but none reported them. The drug that had resistance issue was neomycin. Conclusion: CPs in Kedah State, Malaysia generally have the right perceptions on the dispensing of topical antibacterial drugs. However, their knowledge on the rational use of topical antibacterial drugs and vigilance on antibacterial resistance issue need improvement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a simple method to fabricate multifunctional polyelectrolyte thin films to load and deliver the therapeutic drugs. The multilayer thin films were assembled by the electrostatic adsorption of poly (allylamine hydrochloride) (PAH) and dextran sulfate (DS). The silver nanoparticles (Ag NPs) biosynthesized from novel Hybanthus enneaspermus leaf extract as the reducing agent were successfully incorporated into the film. The biosynthesized Ag NPs showed excellent antimicrobial activity against the range of enteropathogens, which could be significantly enhanced when used with commercial antibiotics. The assembled silver nano composite multilayer films showed rupture and deformation when they are exposed to laser. The Ag NPs act as an energy absorption center, locally heat up the film and rupture it under laser treatment. The antibacterial drug, moxifloxacin hydrochloride (MH) was successfully loaded into the multilayer films. The total amount of MH release observed was about 63% which increased to 85% when subjected to laser light exposure. Thus, the polyelectrolyte thin film reported in our study has significant potential in the field of remote activated drug delivery, antibacterial coatings and wound dressings. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antibacterial drug furazolidone belonging to the group of nitrofuran antibacterial agents has been widely used as an antibacterial and antiprotozoal feed additive for poultry, cattle, and farmed fish in China. During application a large proportion of the administered drug may reach the environment directly or via feces. Although the use of furazolidone is prohibited in numerous countries, there are indications of its illegal use. It is known that furazolidone can be rapidly metabolized to 3-amino-2-oxazolidinone (AOZ) in the body of the target organism. In this study, a total of 21 fish feed samples, including 17 commercial fish feeds from local markets in China (representing 15 different formulations) and 4 fish feeds obtained from Germany and Turkey, respectively, are analyzed to determine whether the drug is still illegally used or commercially available feeds are contaminated by this drug. High-performance liquid chromatography (HPLC) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) methods have been implemented to determine furazolidone and its metabolite AOZ in fish feeds containing animal protein, respectively. An efficient and convenient cleanup method for the determination of furazolidone in fish feeds is developed, and a simple cleanup method for the determination of AOZ is used. Method recoveries for samples used were determined as 87.7-98.3% for furazolidone at two spike levels of 2.0 and 5.0 ng g(-1) and as 95.6-102.8% for AOZ at spike levels of 0.4 and 0.8 ng g(-1). Limits of detections were 0.4 ng g(-1) for furazolidone and 0.05 ng g(-1) for AOZ. The established methods are therefore suitable for the determination of furazolidone and its metabolite AOZ in fish feeds at trace contamination levels. Using the established methods, all fish feed samples have been proved to be furazolidone negative; however, AOZ is tested in 16 of 17 fish feeds obtained from local markets in the Hubei province of China, with a positive rate as high as 94.1%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The lipopolysaccharide (LPS)-rich outer membrane of gram-negative bacteria provides a protective barrier that insulates these organisms from the action of numerous antibiotics. Breach of the LPS layer can therefore provide access to the cell interior to otherwise impermeant toxic molecules and can expose vulnerable binding sites for immune system components such as complement. Inhibition of LPS biosynthesis, leading to a truncated LPS molecule, is an alternative strategy for antibacterial drug development in which this vital cellular structure is weakened. A significant challenge for in vitro screens of small molecules for inhibition of LPS biosynthesis is the difficulty in accessing the complex carbohydrate substrates. We have optimized an assay of the enzymes required for LPS heptose biosynthesis that simultaneously surveys five enzyme activities by using commercially available substrates and report its use in a small-molecule screen that identifies an inhibitor of heptose synthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Importance of the field: The use of topical agents poses unique and challenging hurdles for drug delivery. Topical steroids effectively control ocular inflammation, but are associated with the well-recognized dilemma of patient compliance. Although administration of topical antimicrobials as prophylaxis is acceptable among ophthalmologists, this common practice has no sound evidence base Developing a new antimicrobial agent or delivery strategy with enhanced penetration by considering the anatomical and physiological constraints exerted by the barriers of the eye is not a commonly perceived strategy. Exploiting the permeability of the sclera, subconjunctival routes may offer a promising alternative for enhanced drug delivery and tissue targeting.Area covered in this review: Ocular drug delivery strategies were reviewed for ocular inflammation and infections clinically adopted for newer class of antimicrobials, which use a multipronged approach to limit risks of endophthalmitis.What the reader will gain: The analysis substantiates a new transscleral drug delivery therapeutic approach for cataract surgery.Take home message: A new anti-inflammatory and anti-infective paradigm that frees the patient from the nuisance of topical therapeutics is introduced, opening a large investigative avenue for future improved therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transition metals such as iron and copper are valued in biology for their redox activities because they are able to access various oxidation states. However, these transition metals are also implicated in a number of human disease states and play a role in bacterial infections. The ability to manipulate and monitor metal ions has vast implications on the fields of biology and human health. As such, the research described here covers two related goals: to manipulate metals in specific biological circumstances and to visualize this disturbance in cellular metal homeostasis.

Antibiotic resistance necessitates the development of drugs that exploit new mechanisms of action such as the disruption of metal homeostasis. In order to manipulate metals at the site of bacterial infection, two prochelators were developed around a β-lactam core such that the active chelator is released in the presence of bacteria that produce the resistance-causing β-lactamase enzyme. Both prochelators display enhanced activity toward resistant bacteria compared to clinical antibiotics.

Fluorescent sensors are a powerful tool for detecting small concentrations of biological analytes. Two analogs of a ratiometric fluorescent sensor were designed and synthesized to monitor cellular concentrations of copper and iron. These sensors were found to operate as designed in vitro; however the fluorescence intensity necessary for quantification of cellular metal pools has not yet been achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. Objectives: This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp. , an endophytic fungus associated with leaves of Garcinia nobilis . Methods: The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography– mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 – 128 μg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC50 = 0.88 – 9.21 μg/mL) against HeLa cells. Conclusion: The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background & objectives: The multiple drug resistance (MDR) is a serious health problem and major challenge to the global drug discovery programmes. Most of the genetic determinants that confer resistance to antibiotics are located on R-plasmids in bacteria. The present investigation was undertaken to investigate the ability of organic extract of the fruits of Helicteres isora to cure R-plasmids from certain clinical isolates. mMethods: Active fractions demonstrating antibacterial and antiplasmid activities were isolated from the acetone extracts of shade dried fruits of H. isora by bioassay guided fractionation. Minimal inhibitory concentration (MIC) of antibiotics and organic extracts was determined by agar dilution method. Plasmid curing activity of organic fractions was determined by evaluating the ability of bacterial colonies (pre treated with organic fraction for 18 h) to grow in the presence of antibiotics. The physical loss of plasmid DNA in the cured derivatives was further confirmed by agarose gel electrophoresis. Results: The active fraction did not inhibit the growth of either the clinical isolates or the strains harbouring reference plasmids even at a concentration of 400 mu g/ml. However, the same fraction could cure plasmids from Enterococcus faecalis, Escherichia coli, Bacillus cereus and E. coli (RP4) at curing efficiencies of 14, 26, 22 and 2 per cent respectively. The active fraction mediated plasmid curing resulted in the subsequent loss of antibiotic resistance encoded in the plasmids as revealed by antibiotic resistance profile of cured strains. The physical loss of plasmid was also confirmed by agarose gel electrophoresis. Interpretation & conclusions: The active fraction of acetone extract of H. isora fruits cured R-plasmids from Gram-positive and Gram-negative clinical isolates as well as reference strains. Such plasmid loss reversed the multiple antibiotic resistance in cured derivatives making them sensitive to low concentrations of antibiotics. Acetone fractions of H. isora may be a source to develop antiplasmid agents of natural origin to contain the development and spread of plasmid borne multiple antibiotic resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective : The main objective of this work was to study the antipyretic and antibacterial activity of C. erectus (Buch.-Ham.) Verdcourt leaf extract in an experimental albino rat model. Materials and Methods : The methanol extract of C. erectus leaf (MECEL) was evaluated for its antipyretic potential on normal body temperature and Brewers yeast-induced pyrexia in albino rats model. While the antibacterial activity of MECEL against five Gram (-) and three Gram () bacterial strains and antimycotic activity was investigated against four fungi using agar disk diffusion and microdilution methods. Result : Yeast suspension (10 mL/kg b.w.) elevated rectal temperature after 19 h of subcutaneous injection. Oral administration of MECEL at 100 and 200 mg/kg b.w. showed significant reduction of normal rectal body temperature and yeast-provoked elevated temperature (38.8 0.2 and 37.6 0.4, respectively, at 2-3 h) in a dose-dependent manner, and the effect was comparable to that of the standard antipyretic drug-paracetamol (150 mg/kg b.w.). MECEL at 2 mg/disk showed broad spectrum of growth inhibition activity against both groups of bacteria. However, MECEL was not effective against the yeast strains tested in this study. Conclusion : This study revealed that the methanol extract of C. erectus exhibited significant antipyretic activity in the tested models and antibacterial activity as well, and may provide the scientific rationale for its popular use as antipyretic agent in Khamptiss folk medicines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a nanoparticle loading protocol to develop a transparent, multifunctional polyelectrolyte multilayer film for externally activated drug and protein delivery. The composite film was designed by alternate adsorption of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on a glass substrate followed by nanoparticle synthesis through a polyol reduction method. The films showed a uniform distribution of spherical silver nanoparticles with an average diameter of 50 +/- 20 nm, which increased to 80 +/- 20 nm when the AgNO3 concentration was increased from 25 to 50 mM. The porous and supramolecular structure of the polyelectrolyte multilayer film was used to immobilize ciprofloxacin hydrochloride (CH) and bovine serum albumin (BSA) within the polymeric network of the film. When exposed to external triggers such as ultrasonication and laser light the loaded films were ruptured and released the loaded BSA and CH. The release of CH is faster than that of BSA due to a higher diffusion rate. Circular dichroism measurements confirmed that there was no significant change in the conformation of released BSA in comparison with native BSA. The fabricated films showed significant antibacterial activity against the bacterial pathogen Staphylococcus aureus. Applications envisioned for such drug-loaded films include drug and vaccine delivery through the transdermal route, antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.