993 resultados para Anti-fog coating


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent free polyaniline emeraldine base(EB) corrosion protection coating was prepared, employing aliphatic polyamine as solvent of EB as well as hardener of epoxy resin. This coating passed 2000h of salt fog test when the EB loading was about 1 wt%. The interaction between EB and iron indicated that EB acted as a "quasi-catalyst" to cause the formation of densed iron oxide film in the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel inorganic-organic hybrid hydrophobic anti-reflection silica film used for laser crystal was obtained by sol-gel process. The film consisted of silica sols mixed with a small amount of polymethyl methacrylate (PMMA) or polystyrene (PS). The optical transparency, hydrophobic property and surface morphology of the film were characterized by UV-VIS-NIR spectrophotometer; contact angle instrument and Scanning Electron Microscopy (SEM), respectively. The results showed that the anti-reflection coating had good hydrophobility and optical transparency from 400 nm to 1200 nm. The contact angle reached to 130-140 degrees. SEM images indicated the hydrophobic films modified with PMMA or PS had compact structure compared to the pure silica sol film. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinifex grasses are the dominant vegetative component in Australian grassland habitats, covering approximately 26% of the Australian landmass. Our ongoing work explores the utility of both the cellulosic and resinous components of this abundant biomass for modern applications and a potential economy for our Aboriginal collaborators. This study is focused on the optimisation of a resin extraction process using solvent, and the subsequent evaluation, via a field trial, of the potential use and efficacy of the resin as an anti-termite coating material. Termiticidal performance was evaluated by re-dissolving the extracted resin in acetone and coating on pine timber blocks. The resin-coated and control blocks were then exposed to a colony of Mastotermes darwiniensis’ (Froggatt) termites, which are the most primitive alive and destructive species in subterranean area, at a trial site in northeast Australia, for six months. The results clearly showed that spinifex resin effectively protected the timber from termite attack, while the uncoated control samples were extensively damaged. By demonstrating an enhanced termite resistance, we here report that plant resins that are produced by arid/semi-arid grasses could be potentially used as treatments to prevent termite attack.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A synthesis method is outlined for the design of broadband anti-reflection coatings for use in spaceborne infrared optics. The Golden Section optimisation routine is used to make a search, using designated non-absorptive dielectric thin film combinations, for the coating design which fulfils the required spectral requirements using the least number of layers and different materials. Three examples are given of coatings designed by this method : (I) 1µm to 12µm anti-reflection coating on Zinc Sulphide using Zinc Sulphide and Yttrium Fluoride thin film materials. (ii) 2µm to 14µm anti-reflection coating on Germanium using Germanium and Ytterbium Fluoride thin film materials. (iii) 6µm to 17µm anti-reflection coating on Germanium using Lead Telluride, Zinc Selenide and Barium Fluoride. The measured spectral performance of the manufactured 6µm to 17µm coating on Germanium is given. This is the anti-reflection coating for the germanium optics in the NASA Cassini Orbiter CIRS instrument.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to power our planet for the next century, clean energy technologies need to be developed and deployed. Photovoltaic solar cells, which convert sunlight into electricity, are a clear option; however, they currently supply 0.1% of the US electricity due to the relatively high cost per Watt of generation. Thus, our goal is to create more power from a photovoltaic device, while simultaneously reducing its price. To accomplish this goal, we are creating new high efficiency anti-reflection coatings that allow more of the incident sunlight to be converted to electricity, using simple and inexpensive coating techniques that enable reduced manufacturing costs. Traditional anti-reflection coatings (consisting of thin layers of non-absorbing materials) rely on the destructive interference of the reflected light, causing more light to enter the device and subsequently get absorbed. While these coatings are used on nearly all commercial cells, they are wavelength dependent and are deposited using expensive processes that require elevated temperatures, which increase production cost and can be detrimental to some temperature sensitive solar cell materials. We are developing two new classes of anti-reflection coatings (ARCs) based on textured dielectric materials: (i) a transparent, flexible paper technology that relies on optical scattering and reduced refractive index contrast between the air and semiconductor and (ii) silicon dioxide (SiO2) nanosphere arrays that rely on collective optical resonances. Both techniques improve solar cell absorption and ultimately yield high efficiency, low cost devices. For the transparent paper-based ARCs, we have recently shown that they improve solar cell efficiencies for all angles of incident illumination reducing the need for costly tracking of the sun’s position. For a GaAs solar cell, we achieved a 24% improvement in the power conversion efficiency using this simple coating. Because the transparent paper is made from an earth abundant material (wood pulp) using an easy, inexpensive and scalable process, this type of ARC is an excellent candidate for future solar technologies. The coatings based on arrays of dielectric nanospheres also show excellent potential for inexpensive, high efficiency solar cells. The fabrication process is based on a Meyer rod rolling technique, which can be performed at room-temperature and applied to mass production, yielding a scalable and inexpensive manufacturing process. The deposited monolayer of SiO2 nanospheres, having a diameter of 500 nm on a bare Si wafer, leads to a significant increase in light absorption and a higher expected current density based on initial simulations, on the order of 15-20%. With application on a Si solar cell containing a traditional anti-reflection coating (Si3N4 thin-film), an additional increase in the spectral current density is observed, 5% beyond what a typical commercial device would achieve. Due to the coupling between the spheres originated from Whispering Gallery Modes (WGMs) inside each nanosphere, the incident light is strongly coupled into the high-index absorbing material, leading to increased light absorption. Furthermore, the SiO2 nanospheres scatter and diffract light in such a way that both the optical and electrical properties of the device have little dependence on incident angle, eliminating the need for solar tracking. Because the layer can be made with an easy, inexpensive, and scalable process, this anti-reflection coating is also an excellent candidate for replacing conventional technologies relying on complicated and expensive processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parabolic trough concentrator collector is the most matured, proven and widespread technology for the exploitation of the solar energy on a large scale for middle temperature applications. The assessment of the opportunities and the possibilities of the collector system are relied on its optical performance. A reliable Monte Carlo ray tracing model of a parabolic trough collector is developed by using Zemax software. The optical performance of an ideal collector depends on the solar spectral distribution and the sunshape, and the spectral selectivity of the associated components. Therefore, each step of the model, including the spectral distribution of the solar energy, trough reflectance, glazing anti-reflection coating and the absorber selective coating is explained and verified. Radiation flux distribution around the receiver, and the optical efficiency are two basic aspects of optical simulation are calculated using the model, and verified with widely accepted analytical profile and measured values respectively. Reasonably very good agreement is obtained. Further investigations are carried out to analyse the characteristics of radiation distribution around the receiver tube at different insolation, envelop conditions, and selective coating on the receiver; and the impact of scattered light from the receiver surface on the efficiency. However, the model has the capability to analyse the optical performance at variable sunshape, tracking error, collector imperfections including absorber misalignment with focal line and de-focal effect of the absorber, different rim angles, and geometric concentrations. The current optical model can play a significant role in understanding the optical aspects of a trough collector, and can be employed to extract useful information on the optical performance. In the long run, this optical model will pave the way for the construction of low cost standalone photovoltaic and thermal hybrid collector in Australia for small scale domestic hot water and electricity production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline TiO2 films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried Out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO2 film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents laboratory investigations on the visible corona and discharge radio noise. Experimental investigations are carried on various types of normal and anti-fog types of ceramic disc insulator at the recently established artificial pollution experimental facility. The results obtained from the experimental investigations show better performance for the disc insulators fitted with field reduction electrodes. In addition to the corona and radio noise investigations the comparisons are also made for the experimental results of the potential distribution across the insulator string (with and without filed reduction electrode) with the simulation results obtained by using Surface Charge Simulation Method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The bulk of power transmission from the generating stations to the load centres is carried through overhead lines. The distances involved could span several hundreds of kilometres. To minimize line losses, power transmission over such long distances is carried out at high voltages (several hundreds of kV). A network of outdoor lines operating at different voltages has been found to be the most economical method of power delivery. The disc insulators perform dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower. These insulators have to perform under various environmental conditions; hence the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. In view of this the present investigation aims to simulate the surface electric field stress on different types of porcelain/ceramic insulators; both normal and anti-fog type discs which are used for high voltage transmission/distribution systems are considered. The surface charge simulation method is employed for the field computation to simulate potential, electric field, surface and bulk/volume stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

采用矢量法设计了三硼酸锂(LiB3O5,LBO)晶体上1064nm、532nm、355nm和266nm四倍频增透膜.结果表明,在1064nm、532nm、355nm和266nm波长的剩余反射率分别为0.0019%、0.0031%、0.0061%和0.0047%.根据容差分析,薄膜制备时沉积速率准确度控制在+6.5%时,基频、二倍频、三倍频和四倍频波长的剩余反射率分别增加至0.24%、0.92%、2.38%和4.37%.当薄膜材料折射率的变化控制在+3%时,1064nm波长的剩余反射率增大为0.18%,532nm、355nm和266nm波长分别达0.61%,0.59%,0.20%.与薄膜物理厚度相比,膜层折射率对剩余反射率的影响大.对膜系敏感层的分析表明,在1064nm和266nm波长,从入射介质向基底过渡的第二层膜厚度变化对剩余反射率的影响最大,其次是第一膜层.在532nm和355nm波长,从入射介质向基底过渡的第一和第四膜层是该膜系的敏感层.误差分析也表明,薄膜材料的色散对特定波长的剩余反射率具有明显影响,即1064nm、532nm、355nm和266nm波长的剩余反射率分别增加至0.30%、0.23%、0.58%和3.13%.