989 resultados para Alpine skiing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Video records are widely used to analyze performance in alpine skiing at professional or amateur level. Parts of these analyses require the labeling of some movements (i.e. determining when specific events occur). If differences among coaches and differences for the same coach between different dates are expected, they have never been quantified. Moreover, knowing these differences is essential to determine which parameters reliable should be used. This study aimed to quantify the precision and the repeatability for alpine skiing coaches of various levels, as it is done in other fields (Koo et al, 2005). METHODS: A software similar to commercialized products was designed to allow video analyses. 15 coaches divided into 3 groups (5 amateur coaches (G1), 5 professional instructors (G2) and 5 semi-professional coaches (G3)) were enrolled. They were asked to label 15 timing parameters (TP) according to the Swiss ski manual (Terribilini et al, 2001) for each curve. TP included phases (initiation, steering I-II), body and ski movements (e.g. rotation, weighting, extension, balance). Three video sequences sampled at 25 Hz were used and one curve per video was labeled. The first video was used to familiarize the analyzer to the software. The two other videos, corresponding to slalom and giant slalom, were considered for the analysis. G1 realized twice the analysis (A1 and A2) at different dates and TP were randomized between both analyses. Reference TP were considered as the median of G2 and G3 at A1. The precision was defined as the RMS difference between individual TP and reference TP, whereas the repeatability was calculated as the RMS difference between individual TP at A1 and at A2. RESULTS AND DISCUSSION: For G1, G2 and G3, a precision of +/-5.6 frames, +/-3.0 and +/-2.0 frames, was respectively obtained. These results showed that G2 was more precise than G1, and G3 more precise than G2, were in accordance with group levels. The repeatability for G1 was +/-3.1 frames. Furthermore, differences among TP precision were observed, considering G2 and G3, with largest differences of +/-5.9 frames for "body counter rotation movement in steering phase II", and of 0.8 frame for "ski unweighting in initiation phase". CONCLUSION: This study quantified coach ability to label video in term of precision and repeatability. The best precision was obtained for G3 and was of +/-0.08s, which corresponds to +/-6.5% of the curve cycle. Regarding the repeatability, we obtained a result of +/-0.12s for G1, corresponding to +/-12% of the curve cycle. The repeatability of G2 and G3 are expected to be lower than the precision of G1 and the corresponding repeatability will be assessed soon. In conclusion, our results indicate that the labeling of video records is reliable for some TP, whereas caution is required for others. REFERENCES Koo S, Gold MD, Andriacchi TP. (2005). Osteoarthritis, 13, 782-789. Terribilini M, et al. (2001). Swiss Ski manual, 29-46. IASS, Lucerne.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: In alpine skiing, chronometry analysis is currently the most common tool to assess performance. It is widely used to rank competitors during races, as well as to manage athletes training and to evaluate material. Usually, this measurement is accurately realized using timing cells. Nevertheless, these devices are too complex and expensive to allow chronometry of every gates crossing. On the other side, differential GPS can be used for measuring gate crossing time (Waegli et al). However, this is complex (e.g. recording gate position with GPS) and mainly used in research applications. The aim of the study was to propose a wearable system to time gates crossing during alpine skiing slalom (SL), which is suitable for routine uses. METHODS: The proposed system was composed of a 3D accelerometer (ADXL320®, Analog Device, USA) placed at the sacrum of the athlete, a matrix of force sensors (Flexiforce®, Tekscan, USA) fixed on the right shin guard and a data logger (Physilog®, BioAGM, Switzerland). The sensors were sampled at 500 Hz. The crossing time were calculated in two phases. First, the accelerometer was used to detect the curves by considering the maximum of the mediolateral peak acceleration. Then, the force sensors were used to detect the impacts with the gates by considering maximum force variation. In case of non impact, the detection was realized based on the acceleration and features measured at the other gates. In order to assess the efficiency of the system, two different SL were monitored twice for two world cup level skiers, a male SL expert and a female downhill expert. RESULTS AND DISCUSSION: The combination of the accelerometer and force sensors allowed to clearly identify the gate crossing times. When comparing the runs of the SL expert and the downhill expert, we noticed that the SL expert was faster. For example for the first SL, the overall difference between the best run of each athlete was of 5.47s. At each gate, the SL expert increased the time difference slower at the beginning (0.27s/gate) than at the end (0.34s/gate). Furthermore, when comparing the runs of the SL expert, a maximum time difference of 20ms at each gate was noticed. This showed high repeatability skills of the SL expert. In opposite, the downhill expert with a maximum difference time of 1s at each gate was clearly less repeatable. Both skiers were not disturbed by the system. CONCLUSION: This study proposed a new wearable system to automatically time gates crossing during alpine skiing slalom combining force and accelerometer sensors. The system was evaluated with two professional world cup skiers and showed a high potential. This system could be extended to time other parameters. REFERENCES Waegli A, Skaloud J (2007). Inside GNSS, Spring, 24-34.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attempting to achieve the high diversity of training goals in modern competitive alpine skiing simultaneously can be difficult and may lead to compromised overall adaptation. Therefore, we investigated the effect of block training periodization on maximal oxygen consumption (VO2max) and parameters of exercise performance in elite junior alpine skiers. Six female and 15 male athletes were assigned to high-intensity interval (IT, N = 13) or control training groups (CT, N = 8). IT performed 15 high-intensity aerobic interval (HIT) sessions in 11 days. Sessions were 4 x 4 min at 90-95% of maximal heart rate separated by 3-min recovery periods. CT continued their conventionally mixed training, containing endurance and strength sessions. Before and 7 days after training, subjects performed a ramp incremental test followed by a high-intensity time-to-exhaustion (tlim) test both on a cycle ergometer, a 90-s high-box jump test as well as countermovement (CMJ) and squat jumps (SJ) on a force plate. IT significantly improved relative VO2max by 6.0% (P < 0.01; male +7.5%, female +2.1%), relative peak power output by 5.5% (P < 0.01) and power output at ventilatory threshold 2 by 9.6% (P < 0.01). No changes occurred for these measures in CT. tlim remained unchanged in both groups. High-box jump performance was significantly improved in males of IT only (4.9%, P < 0.05). Jump peak power (CMJ -4.8%, SJ -4.1%; P < 0.01), but not height decreased in IT only. For competitive alpine skiers, block periodization of HIT offers a promising way to efficiently improve VO2max and performance. Compromised explosive jump performance might be associated with persisting muscle fatigue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To analyse risk factors in alpine skiing. DESIGN: A controlled multicentre survey of injured and non-injured alpine skiers. SETTING: One tertiary and two secondary trauma centres in Bern, Switzerland. PATIENTS AND METHODS: All injured skiers admitted from November 2007 to April 2008 were analysed using a completed questionnaire incorporating 15 parameters. The same questionnaire was distributed to non-injured controls. Multiple logistic regression was performed. Patterns of combined risk factors were calculated by inference trees. A total of 782 patients and 496 controls were interviewed. RESULTS: Parameters that were significant for the patients were: high readiness for risk (p = 0.0365, OR 1.84, 95% CI 1.04 to 3.27); low readiness for speed (p = 0.0008, OR 0.29, 95% CI 0.14 to 0.60); no aggressive behaviour on slopes (p<0.0001, OR 0.19, 95% CI 0.09 to 0.37); new skiing equipment (p = 0.0228, OR 59, 95% CI 0.37 to 0.93); warm-up performed (p = 0.0015, OR 1.79, 95% CI 1.25 to 2.57); old snow compared with fresh snow (p = 0.0155, OR 0.31, 95% CI 0.12 to 0.80); old snow compared with artificial snow (p = 0.0037, OR 0.21, 95% CI 0.07 to 0.60); powder snow compared with slushy snow (p = 0.0035, OR 0.25, 95% CI 0.10 to 0.63); drug consumption (p = 0.0044, OR 5.92, 95% CI 1.74 to 20.11); and alcohol abstinence (p<0.0001, OR 0.14, 95% CI 0.05 to 0.34). Three groups at risk were detected: (1) warm-up 3-12 min, visual analogue scale (VAS)(speed) >4 and bad weather/visibility; (2) VAS(speed) 4-7, icy slopes and not wearing a helmet; (3) warm-up >12 min and new skiing equipment. CONCLUSIONS: Low speed, high readiness for risk, new skiing equipment, old and powder snow, and drug consumption are significant risk factors when skiing. Future work should aim to identify more precisely specific groups at risk and develop recommendations--for example, a snow weather index at valley stations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past few years, technological breakthroughs have helpedcompetitive sports to attain new levels. Training techniques, athletes' management and methods to analyse specific technique and performancehave sharpened, leading to performance improvement. Alpine skiing is not different. The objective of the present work was to study the technique of highy skilled alpine skiers performing giant slalom, in order to determine the quantity of energy that can be produced by skiers to increase their speed. To reach this goal, several tools have been developed to allow field testing on ski slopes; a multi cameras system, a wireless synchronization system, an aerodynamic drag model and force plateforms have especially been designed and built. The analyses performed using the different tools highlighted the possibility for several athletes to increase their energy by approximately 1.5 % using muscular work. Nevertheless, the athletes were in average not able to use their muscular work in an efficient way. By offering functional tools such as drift analysis using combined data from GPS and inertial sensors, or trajectory analysis based on tracking morphological points, this research makes possible the analysis of alpine skiers technique and performance in real training conditions. The author wishes for this work to be used as a basis for continued knowledge and understanding of alpine skiing technique. - Le sport de compétition bénéficie depuis quelques années des progrès technologiques apportés par la science. Les techniques d'entraînement, le suivi des athlètes et les méthodes d'analyse deviennent plus pointus, induisant une nette amélioration des performances. Le ski alpin ne dérogeant pas à cette règle, l'objectif de ce travail était d'analyser la technique de skieurs de haut niveau en slalom géant afin de déterminer la quantité d'énergie fournie par les skieurs pour augmenter leur vitesse. Pour ce faire, il a été nécessaire de developer différents outils d'analyse adaptés aux contraintes inhérentes aux tests sur les pistes de skis; un système multi caméras, un système de synchronisation, un modèle aérodynamique et des plateformes de force ont notamment été développés. Les analyses effectuées grâce à ces différents outils ont montré qu'il était possible pour certains skieur d'augmenter leur énergie d'environ 1.5 % grâce au travail musculaire. Cependant, les athlètes n'ont en moyenne pas réussi à utiliser leur travail musculaire de manière efficace. Ce projet a également rendu possible des analyses adaptées aux conditions d'entraînement des skieurs en proposant des outils fonctionnels tels que l'analyse du drift grâce à des capteurs inertiels et GPS, ainsi que l'analyse simplifiée de trajectoires grâce au suivi de points morphologiques. L'auteur espère que ce travail servira de base pour approfondir les connaissances de la technique en ski alpin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eccentric cycling, where the goal is to resist the pedals, which are driven by a motor, increases muscle strength and size in untrained subjects. We hypothesized that it could also be beneficial for athletes, particularly in alpine skiing, which involves predominantly eccentric contractions at longer muscle lengths. We investigated the effects of replacing part of regular weight training with eccentric cycling in junior male alpine skiers using a matched-pair design. Control subjects ( N=7) executed 1-h weight sessions 3 times per week, which included 4-5 sets of 4 leg exercises. The eccentric group ( N=8) performed only 3 sets, followed by continuous sessions on the eccentric ergometer for the remaining 20 min. After 6 weeks, lean thigh mass increased significantly only in the eccentric group. There was a groupxtime effect on squat-jump height favouring the eccentric group, which also experienced a 6.5% improvement in countermovement-jump height. The ability to finely modulate muscle force during variable eccentric cycling improved 50% (p=0.004) only in the eccentric group. Although eccentric cycling did not significantly enhance isometric leg strength, we believe it is beneficial for alpine skiers because it provides an efficient means for hypertrophy while closely mimicking the type of muscle actions encountered while skiing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. RESULTS: In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P < 0.01), but corresponding work rate (W) was unchanged; 2) at ventilatory thresholds (VT), absolute and relative work rates were similar but heart rates were lower; 3) VO2/W slope was greater (9.59 +/- 0.6 vs 9.19 +/- 0.4 mL O2 x min(-1) x W(-1), P = 0.02), with similar flattening (P < 0.01) above V T1 at both time points; and 4) jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P < 0.01) and CMJ (52.7 +/- 4.6 vs 50.4 +/- 5.0 cm, P < 0.01). DISCUSSION: We believe that aerobic capacity and leg power were constrained in preseason and that improvements primarily reflected an in-season recovery from a fatigued state, which was caused by incongruous preseason training. Residual adaptations to high-altitude exposure in preseason could have also affected the results. Nonetheless, modern alpine skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. CONCLUSIONS: We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The association between helmet use during alpine skiing and incidence and severity of head injuries was analyzed. All patients admitted to a level 1 trauma center for traumatic brain injuries (TBIs) sustained from skiing accidents during the seasons 2000-2001 and 2010-2011 were eligible. Primary outcome was the association between helmet use and severity of TBI measured by Glasgow Coma Scale (GCS), computed tomography (CT) results, and necessity of neurosurgical intervention. Of 1362 patients injured during alpine skiing, 245 (18%) sustained TBI and were included. TBI was fatal in 3%. Head injury was in 76% minor (Glasgow Coma Scale, 13-15), 6% moderate, and 14% severe. Number and percentage of TBI patients showed no significant trend over the investigated seasons. Forty-five percent of the 245 patients had pathological CT findings and 26% of these required neurosurgical intervention. Helmet use increased from 0% in 2000-2001 to 71% in 2010-2011 (p<0.001). The main analysis, comparing TBI in patients with or without a helmet, showed an adjusted odds ratio (OR) of 1.44 (p=0.430) for suffering moderate-to-severe head injury in helmet users. Analyses comparing off-piste to on-slope skiers revealed a significantly increased OR among off-piste skiers of 7.62 (p=0.004) for sustaining a TBI requiring surgical intervention. Despite increases in helmet use, we found no decrease in severe TBI among alpine skiers. Logistic regression analysis showed no significant difference in TBI with regard to helmet use, but increased risk for off-piste skiers. The limited protection of helmets and dangers of skiing off-piste should be targeted by prevention programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Challenging environmental conditions, including heat and humidity, cold, and altitude, pose particular risks to the health of Olympic and other high-level athletes. As a further commitment to athlete safety, the International Olympic Committee (IOC) Medical Commission convened a panel of experts to review the scientific evidence base, reach consensus, and underscore practical safety guidelines and new research priorities regarding the unique environmental challenges Olympic and other international-level athletes face. For non-aquatic events, external thermal load is dependent on ambient temperature, humidity, wind speed and solar radiation, while clothing and protective gear can measurably increase thermal strain and prompt premature fatigue. In swimmers, body heat loss is the direct result of convection at a rate that is proportional to the effective water velocity around the swimmer and the temperature difference between the skin and the water. Other cold exposure and conditions, such as during Alpine skiing, biathlon and other sliding sports, facilitate body heat transfer to the environment, potentially leading to hypothermia and/or frostbite; although metabolic heat production during these activities usually increases well above the rate of body heat loss, and protective clothing and limited exposure time in certain events reduces these clinical risks as well. Most athletic events are held at altitudes that pose little to no health risks; and training exposures are typically brief and well-tolerated. While these and other environment-related threats to performance and safety can be lessened or averted by implementing a variety of individual and event preventative measures, more research and evidence-based guidelines and recommendations are needed. In the mean time, the IOC Medical Commission and International Sport Federations have implemented new guidelines and taken additional steps to mitigate risk even further.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal