951 resultados para Allopatric speciation
Resumo:
Background: The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America. Results: The results showed that the crosses between Australian and Argentinean or Mozambican strains of boophilid ticks are infertile while crosses between Argentinean and Mozambican strains are fertile. These results showed that tick strains from Africa (Mozambique) and America (Argentina) are the same species, while ticks from Australia may actually represent a separate species. The genetic analysis of mitochondrial 12S and 16S rDNA and microsatellite loci were not conclusive when taken separately, but provided evidence that Australian tick strains were genetically different from Asian, African and American strains. Conclusion: The results reported herein support the hypothesis that at least two different species share the name R. microplus. These species could be redefined as R. microplus (Canestrini, 1887) (for American and African strains) and probably the old R. australis Fuller, 1899 (for Australian strains), which needs to be redescribed. However, experiments with a larger number of tick strains from different geographic locations are needed to corroborate these results.
Resumo:
Allopatric speciation results from geographic isolation between populations. In the absence of gene flow, reproductive isolation arises gradually and incidentally as a result of mutation, genetic drift and the indirect effects of natural selection driving local adaptation(1-3). In contrast, speciation by reinforcement is driven directly by natural selection against maladaptive hybridization(1,4). This gives individuals that choose the traits of their own lineage greater fitness, potentially leading to rapid speciation between the lineages(1,4). Reinforcing natural selection on a population of one of the lineages in a mosaic contact zone could also result in divergence of the population from the allopatric range of its own lineage outside the zone(4-6). Here we test this with molecular data, experimental crosses, field measurements and mate choice experiments in a mosaic contact zone between two lineages of a rainforest frog. We show that reinforcing natural selection has resulted in significant premating isolation of a population in the contact zone not only from the other lineage but also, incidentally, from the closely related main range of its own lineage. Thus we show the potential for reinforcement to drive rapid allopatric speciation.
Resumo:
The origin of species diversity has challenged biologists for over two centuries. Allopatric speciation, the divergence of species resulting from geographical isolation, is well documented. However, sympatric speciation, divergence without geographical isolation, is highly controversial. Claims of sympatric speciation must demonstrate species sympatry, sister relationships, reproductive isolation, and that an earlier allopatric phase is highly unlikely. Here we provide clear support for sympatric speciation in a case study of two species of palm (Arecaceae) on an oceanic island. A large dated phylogenetic tree shows that the two species of Howea, endemic to the remote Lord Howe Island, are sister taxa and diverged from each other well after the island was formed 6.9 million years ago. During fieldwork, we found a substantial disjunction in flowering time that is correlated with soil preference. In addition, a genome scan indicates that few genetic loci are more divergent between the two species than expected under neutrality, a finding consistent with models of sympatric speciation involving disruptive/divergent selection. This case study of sympatric speciation in plants provides an opportunity for refining theoretical models on the origin of species, and new impetus for exploring putative plant and animal examples on oceanic islands.
Resumo:
Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers (Elgvin et al. 2011; Hermansen et al. 2011) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved.
Resumo:
The genetic divergence and evolution of new species within the geographic range of a single population (sympatric speciation) contrasts with the well-established doctrine that speciation occurs when populations become geographically isolated (allopatric speciation). Although there is considerable theoretical support for sympatric speciation [1, 2], this mode of diversification remains controversial, at least in part because there are few well-supported examples [3]. We use a combination of molecular, ecological, and biogeographical data to build a case for sympatric speciation by host shift in a new species of coral-dwelling fish (genus Gobiodon). We propose that competition for preferred coral habitats drives host shifts in Gobiodon and that the high diversity of corals provides the source of novel, unoccupied habitats. Disruptive selection in conjunction with strong host fidelity could promote rapid reproductive isolation and ultimately lead to species divergence. Our hypothesis is analogous to sympatric speciation by host shift in phytophagous insects [4, 5] except that we propose a primary role for intraspecific competition in the process of speciation. The fundamental similarity between these fishes and insects is a specialized and intimate relationship with their hosts that makes them ideal candidates for speciation by host shift.
Resumo:
Eustatic sea level changes during Pleistocene climatic fluctuations produced several cycles of connection-isolation among continental islands of the Sunda shelf. To explore the potential effects of these fluctuations, we reconstructed a model of the vicariant events that separated these islands, based on bathymetric information. Among many possible scenarios, two opposite phylogenetic patterns of evolution were predicted for terrestrial organisms living in this region: one is based on the classical allopatric speciation mode of evolution, while the other is the outcome of a sequential dispersal colonization of the archipelago. We tested the applicability of these predictions with an analysis of sequence variation of the cytochrome b gene from several taxa of Hylomys. They were sampled throughout SE-Asia and the Sunda islands. High levels of haplotype differentiation characterize the different island taxa. Such levels of differentiation support the existence of several allopatric species, as was suggested by previous allozyme and morphological data. Also in accordance with previous results, the occurrence of two sympatric species from Sumatra is suggested by their strongly divergent haplotypes. One species, Hylomys suillus maxi, is found both on Sumatra and in Peninsular Malaysia, while the other, H. parvus, is endemic to Sumatra. Its closest relative is H. suillus dorsalis from Borneo. Phylogenetic reconstructions also demonstrate the existence of a Sundaic clade composed of all island taxa, as opposed to those from the continent. Although there is no statistical support for either proposed biogeographic model of evolution, we argue that the sequential dispersal scenario is more appropriate to describe the genetic variation found among the Hylomys taxa. However, despite strong differentiation among island haplotypes, the cladistic relationships between some island taxa could not be resolved. We argue that this is evidence of a rapid radiation, suggesting that the separation of the islands may have been perceived as a simultaneous event rather than as a succession of vicariant events. Furthermore, the estimates of divergence times between the haplotypes of these taxa suggest that this radiation may actually have predated the climatic fluctuations of the Pleistocene. Further refinement of the initial palaeogeographic models of evolution are therefore needed to account for these results.
Resumo:
Background One key question in evolutionary biology deals with the mode and rate at which reproductive isolation accumulates during allopatric speciation. Little is known about secondary contacts of recently diverged anuran species. Here we conduct a multi-locus field study to investigate a contact zone between two lineages of green toads with an estimated divergence time of 2.7 My, and report results from preliminary experimental crosses. Results The Sicilian endemic Bufo siculus and the Italian mainland-origin B. balearicus form a narrow hybrid zone east of Mt. Etna. Despite bidirectional mtDNA introgression over a ca. 40 km North-South cline, no F1 hybrids could be found, and nuclear genomes display almost no admixture. Populations from each side of the contact zone showed depressed genetic diversity and very strong differentiation (FST = 0.52). Preliminary experimental crosses point to a slightly reduced fitness in F1 hybrids, a strong hybrid breakdown in backcrossed offspring (F1 x parental, with very few reaching metamorphosis) and a complete and early mortality in F2 (F1 x F1). Conclusion Genetic patterns at the contact zone are molded by drift and selection. Local effective sizes are reduced by the geography and history of the contact zone, B. balearicus populations being at the front wave of a recent expansion (late Pleistocene). Selection against hybrids likely results from intrinsic genomic causes (disruption of coadapted sets of genes in backcrosses and F2-hybrids), possibly reinforced by local adaptation (the ranges of the two taxa roughly coincide with the borders of semiarid and arid climates). The absence of F1 in the field might be due to premating isolation mechanisms. Our results, show that these lineages have evolved almost complete reproductive isolation after some 2.7 My of divergence, contrasting sharply with evidence from laboratory experiments that some anuran species may still produce viable F1 offspring after > 20 My of divergence.
Resumo:
Secondary contact zones have the potential to shed light on the mode and rate at which reproductive isolation accumulates during allopatric speciation. We investigated the population genetics of a contact zone between two highly divergent lineages of field voles (Microtus agrestis) in the Swiss Jura mountains. To shed light on the processes underlying introgression, we used maternally, paternally, and bi-parentally inherited markers. Though the two lineages maintained a strong genetic structure, we found some hybrids and evidence of gene flow. The extent of introgression varied with the mode of inheritance, being highest for mtDNA and absent for the Y chromosome. In addition, introgression was asymmetric, occurring only from the Northern to the Southern lineage. Both patterns seem parsimoniously explained by neutral processes linked to differences in effective sizes and sex-biased dispersal rates. The lineage with lower effective population size was also the more introgressed, and the mode-of-inheritance effect correlated with the male-biased dispersal rate of microtine rodents. We cannot exclude, however, that Haldane's effect contributed to the latter, as we found a marginally significant deficit in males (the heterogametic sex) among hybrids. We propose a possible demographic scenario to account for the patterns documented, and empirical extensions to further investigate this contact zone.
Resumo:
During the Pleistocene glaciations, the Alps were an efficient barrier to gene flow between isolated populations, often leading to allopatric speciation. Afterwards, the Alps strongly influenced the post-glacial recolonization of Europe and represent a major suture zone between differentiated populations. Two hybrid zones in the Swiss and French Alps between genetically and chromosomally well-differentiated species-the Valais shrew, Sorex antinorii, and the common shrew, S. araneus-were studied karyotypically and by analyzing the distribution of seven microsatellite loci. In the center of the Haslital hybrid zone the two species coexist over a distance of 900 m. Hybrid karyotypes, among them the most complex known in Sorex, are rare. F-statistics based on microsatellite data revealed a strong heterozygote deficit only in the center of the zone, due to the sympatric distribution of the two species with little hybridization between them. Structuring within the species (both F(IS) and F(ST)) was low. An hierarchical analysis showed a high level of interspecific differentiation. Results were compared with those previously reported in another hybrid zone located at Les Houches in the French Alps. Genetic structuring within and between species was comparable in both hybrid zones, although chromosomal incompatibilities are more important in Haslital, where a linkage block of the race-specific chromosomes should additionally impede gene flow. Evidence for a more restricted gene flow in Haslital comes from the genetically intermediate hybrid karyotypes, whereas in Les Houches, hybrid karyotypes are genetically identical to individuals of the pure karyotypic races. Genic and chromosomal introgression was observed in Les Houches, but not in Haslital. The possible influence of a river, separating the two species at Les Houches, on gene flow is discussed.
Resumo:
The exceptionally broad species diversity of vascular plant genera in east Asian temperate forests, compared with their sister taxa in North America, has been attributed to the greater climatic diversity of east Asia, combined with opportunities for allopatric speciation afforded by repeated fragmentation and coalescence of populations through Late Cenozoic ice-age cycles1. According to Qian and Ricklefs1, these opportunities occurred in east Asia because temperate forests extended across the continental shelf to link populations in China, Korea and Japan during glacial periods, whereas higher sea levels during interglacial periods isolated these regions and warmer temperatures restricted temperate taxa to disjunct refuges. However, palaeovegetation data from east Asia2, 3, 4, 5, 6 show that temperate forests were considerably less extensive than today during the Last Glacial Maximum, calling into question the coalescence of tree populations required by the hypothesis of Qian and Ricklefs1.
Resumo:
Cytogenetic studies have been revealing a great diversity not detected, until then, in several families of fishes. Many of these groups, especially those that exhibit great diversity, like Perciformes and Siluriformes, possess species with difficult morphologic characterization, called cryptic species, commonly detected through karyotypic analyses, which reveals outstanding interespecific variations with relationship to the number and its chromosomal structures. Thus, the present work intends to contribute for the cytogenetic knowledge of marine and brackish fish species, because they peculiar life habits and by lack of cytogenetic data of your genetic aspects. Therefore, cytogenetic studies were developed in a species of Apogonidae (Perciformes), two species of sea catfishes of the family Ariidae (Siluriformes) and brackish fish Paurachenipterus galeatus (Siluriformes, Auchenipteridae), through C banding, Ag-NOR, use of base-specific flourochromes (DAPI and CMA3), as well as FISH (Fluorescent in situ hybridization) using ribosomal DNA probes 5S and 18S. The present results contribute to a better understanding of the processes of differentiation patterns and chromosome evolution in these groups. The use of other approaches (the morphology and molecular tools) will allow a larger understanding of the genetic and biological diversity of the Brazilian ichthyofauna.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)