925 resultados para Alien-invasive species
Resumo:
1. Plants interact with many organisms, such as microbes and herbivores, and these interactions are likely to affect the establishment and spread of plants. In the context of plant invasions, mycorrhizal fungi and constitutive and induced resistance of plants against herbivores have received attention independently of each other. However, plants are frequently involved in complex multi-trophic interactions, which might differ between invasive and non-invasive alien plants. 2. In a multi-species comparative experiment, we aimed to improve our understanding of plant traits associated with invasiveness. We tested whether eight invasive alien plant species use the mycorrhizal symbiosis in a more beneficial way, and have higher levels of constitutive or induced resistance against two generalist bioassay herbivores, than nine non-invasive alien species. We further assessed whether the presence of mycorrhizal fungi altered the resistance of the plant species, and whether this differed between invasive and non-invasive alien species. 3. While invasive species produced more biomass, they did not differ in their biomass response to mycorrhizal fungi from non-invasive alien species. Invasive species also did not have higher levels of constitutive or induced resistance against the two generalist herbivores. Mycorrhizal fungi greatly affected the resistance of our plant species, however, this was also unrelated to whether the alien species were invasive or not. 4. Our study confirms the previous findings that invasive species generally grow faster and produce more biomass than non-invasive alien species. We further show that alien plant species used a variety of defence strategies, and also varied in their interactions with mycorrhizal fungi. These multi-trophic interactions were not consistently related to invasiveness of the alien plant species. 5. We suggest that awareness of the fact that alien plant species are involved in multi-trophic interactions might lead to a more complete understanding of the factors contributing to a plant's success.
Resumo:
Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.
Resumo:
Ecosystems are complex systems and changing one of their components can alter their whole functioning. Decomposition and biodiversity are two factors that play a role in this stability, and it is vital to study how these two factors are interrelated and how other factors, whether of human origin or not, can affect them. This study has tested different hypotheses regarding the effects of pesticides and invasive species on the biodiversity of the soil fauna and litter decomposition rate. Decomposition was measured using the litterbags technique. Our results indicate that pesticides had a negative effect on decomposition whereas invasive species increased decomposition rate. At the same time, the diversity of the soil biota was unaffected by either factor. These results allow us to better understand the response of important ecosystem functions to human‐induced alterations, in order to mitigate harmful effects or restore them wherever necessary.
Resumo:
While a number of plants, animals, and insects in Madagascar have been called 'invasive', the topic of invasive species has until recently received less attention here than in other island contexts. Some species, often alien to Madagascar and introduced by humans, have expanded their range rapidly and have had both negative and positive effects on landscapes, on native biodiversity, and on livelihoods. Examples include the prickly pear (raketa), the silver wattle (mimosa), and, recently, the Asian common toad (radaka boka). Building on a conceptual approach to 'invasive species', this paper emphasizes the importance of inclusive and deliberative site- and population - specific management of invasive species. It analyses three separate concepts commonly used in definitions of invasion: the origin, behaviour, and effects of particular species. It places these concepts in their broader social and ecological context, with particular attention to local perspectives on invasive species. We illustrate these concepts with Malagasy examples and data. The examples demonstrate that while invasions can have dramatic consequences, there can be multiple, often competing, interests as well as site - specific biophysical, environmental, and cultural considerations that need to be taken into account when designing policy and management interventions. We conclude with a number of lessons learned. RESUME FRANCAIS Contrairement à la plupart des autres îles, et en dépit du qualificatif 'invasif' rattaché depuis longtemps à certaines espèces qui s'y sont naturalisées, les réflexions autour de l'approche des espèces invasives à Madagascar demeurent récentes. L'opuntia (Opuntia spp.) figure certes parmi les plus anciens exemples d'espèces traités dans la littérature sur les invasions biologiques. Mais ce n'est vraiment qu'avec le retentissement médiatique autour de la détection en 2011 de la présence du crapaud masqué (Duttaphrynus melanostictus) et la recherche d'une parade appropriée que s'est affirmée la nécessité de traiter cette question des espèces invasives en tant que telle. Une posture nativiste et uniforme qui ignorerait la spécificité des contextes biophysiques et socio - économiques locaux, mais aussi la pluralité des formes d'invasion biologique et des défi- nitions qui s'y rattachent, ne saurait être privilégiée. L'article montre qu'il s'agit de situer les réflexions dans un contexte insulaire socio - économique dans lequel les espèces allogènes tiennent depuis longtemps une large place. Il défend en outre la nécessité d'envisager les espèces invasives non pas selon une forme de perception unique et autoritariste, mais selon une diversité de points de vue, conforme aux conflits d'intérêts qui se manifestent parfois, et mettant plutôt en avant le caractère exogène des espèces invasives, leurs effets (négatifs, mais aussi positifs) sur le milieu, ou leur mode de fonctionnement (disper- sion, dominance) dans des contextes spécifiques et locaux. Il convient en particulier d'observer qu'aux coûts générés par les invasions biologiques peuvent s'ajouter des bénéfices économiques, et que les impacts écologiques néfastes peuvent se combiner avec des incidences heureuses, y compris auprès d'espèces indigènes en situation critique. En outre, le point de vue des populations humaines, leur connaissance d'espèces invasives quotidiennement rencontrées, leur réticence à scin- der le vivant en espèces indigènes et allogène, mais aussi leur vision pragmatique, ne sauraient être mésestimés, et moins encore oubliés. Enfin, l'article invite à prendre du recul face aux effets rhétoriques liés aux discours conventionnels sur les inva- sions biologiques, à éviter les amalgames et les généralisations excessives, à tenir compte des contraintes environnementales mais aussi des aspirations socio - économiques des populations locales, et à prendre en compte la diversité des spécificités locales, qu'elles soient biophysiques ou sociales. En conclusion, il est sans doute heureux que Madagascar n'ait rejoint que très récemment la mouvance internationale des réflexions sur les espèces invasives : cela lui permet en effet d'être en mesure de disposer d'une position équilibrée, déjouant certains discours catastrophistes, et préférant une approche résolument contextualisée, à l'échelle nationale comme aux échelles régionales.
Resumo:
The non-native invasive anuran Lithobates catesbeianus is presently distributed in Brazil, especially in the Atlantic Rainforest biodiversity hotspot. Here, we use a maximum entropy ecological niche modeling algorithm (i) to model the North American native geographic distribution of this species and (ii) to project that model onto the whole of Brazil. After applying a threshold value that balances commission and omission errors, the projection results suggested high probabilities of occurrence mostly in southern and southeastern Brazil. We also present the first report on the species known distribution in Brazil, showing good agreement with model predictions. If the predictive map is interpreted as depicting invasiveness potential of L. catesbeianus, strategies to prevent further invasion in Brazil should be focused especially in the Atlantic Rainforest biodiversity hotspot.
Resumo:
The majority of plant species rely, at least partly, on animals for pollination. Our knowledge on whether pollinator visitation differs between native and alien plant species, and between invasive and non-invasive alien species is still limited. Additionally, because numerous invasive plant species are escapees from horticulture, the transition from human-assisted occurrence in urbanized habitats to unassisted persistence and spread in (semi-)natural habitats requires study. To address whether pollinator visitation differs between native, invasive alien and non-invasive alien species, we did pollinator observations for a total of 17 plant species representing five plant families. To test whether pollinator visitation to the three groups of species during the initial stage of invasion depends on habitat type, we did the study in three urbanized habitats and three semi-natural grasslands, using single potted plants. Native plants had more but smaller flower units than alien plants, and invasive alien plants had more but smaller flowers than non-invasive alien plants. After accounting for these differences in floral display, pollinator visitation was higher for native than for alien plant species, but did not differ between invasive and non-invasive alien plant species. Pollinator visitation was on average higher in semi-natural than in urbanized habitats, irrespective of origin or status of the plant species. This might suggest that once an alien species has managed to escape from urbanized into more natural habitats, pollinator limitation will not be a major barrier to establishment and invasion.
Resumo:
The last decade has seen spirited debates about how resource availability affect the intensity of competition. This paper examines the effect that a dominant introduced species, Carrichtera annua, has upon the winter annual community in the arid chenopod shrublands of South Australia. Manipulative field experiments were conducted to assess plant community response to changing below-ground resource levels and to the manipulation of the density of C. annua. Changes in the density of C. annua had little effect on the abundance of all other species in the guild. Nutrient addition produced an increase in the biomass of the most abundant native species, Crassula colorata. An analysis of the root distribution of the main species suggested that the areas of soil resource capture of C. annua and C. colorata are largely segregated. Our results suggest that intraspecific competition may be stronger than interspecific competition, controlling the species responses to increased resource availability. The results are consistent with a two-phase resource dynamics systems, with pulses of high resource availability triggering growth, followed by pulses of stress. Smaller plants were nutrient limited under natural field conditions, suggesting that stress experienced during long interpulse phases may override competitive effects after short pulse phases. The observed differences in root system structure will determine when plants of a different species are experiencing a pulse or an interpulse phase. We suggest that the limitations to plant recruitment and growth are the product of a complex interplay between the length and intensity of the pulse of resource availability, the duration and severity of the interpulse periods, and biological characters of the species.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente
Resumo:
The work conelete of a survey of the mvaewe plants which appeared during the first six months of seedling stage in foreet plantations of second and third rotation, in the Jari area, Brazil. The resulting list showed two types of invasives: (1) true weeds - those cosmopolitan species that are typical of disturbed habitats; and (2) pioneer species - those which were probably remnants from the original natural vegetation of the studied area.
Resumo:
Biological invasions and land-use changes are two major causes of the global modifications of biodiversity. Habitat suitability models are the tools of choice to predict potential distributions of invasive species. Although land-use is a key driver of alien species invasions, it is often assumed that land-use is constant in time. Here we combine historical and present day information, to evaluate whether land-use changes could explain the dynamic of invasion of the American bullfrog Rana catesbeiana (=Lithobathes catesbeianus) in Northern Italy, from the 1950s to present-day. We used maxent to build habitat suitability models, on the basis of past (1960s, 1980s) and present-day data on land-uses and species distribution. For example, we used models built using the 1960s data to predict distribution in the 1980s, and so on. Furthermore, we used land-use scenarios to project suitability in the future. Habitat suitability models predicted well the spread of bullfrogs in the subsequent temporal step. Models considering land-use changes predicted invasion dynamics better than models assuming constant land-use over the last 50 years. Scenarios of future land-use suggest that suitability will remain similar in the next years. Habitat suitability models can help to understand and predict the dynamics of invasions; however, land-use is not constant in time: land-use modifications can strongly affect invasions; furthermore, both land management and the suitability of a given land-use class may vary in time. An integration of land-use changes in studies of biological invasions can help to improve management strategies.
Resumo:
Habitat loss and fragmentation due to land use changes are major threats to biodiversity in forest ecosystems, and they are expected to have important impacts on many taxa and at various spatial scales. Species richness and area relationships (SARs) have been used to assess species diversity patterns and drivers, and thereby in the establishment of conservation and management strategies. Here we propose a hierarchical approach to achieve deeper insights on SARs in small forest islets in intensive farmland and to address the impacts of decreasing naturalness on such relationships. In the intensive dairy landscapes of Northwest Portugal, where small forest stands (dominated by pines, eucalypts or both) represent semi-natural habitat islands, 50 small forest stands were selected and surveyed for vascular plant diversity. A hierarchical analytical framework was devised to determine species richness and inter- and intra-patch SARs for the whole set of forest patches (general patterns) and for each type of forest (specific patterns). Differences in SARs for distinct groups were also tested by considering subsets of species (native, alien, woody, and herbaceous). Overall, values for species richness were confirmed to be different between forest patches exhibiting different levels of naturalness. Whereas higher values of plant diversity were found in pine stands, higher values for alien species were observed in eucalypt stands. Total area of forest (inter-patch SAR) was found not to have a significant impact on species richness for any of the targeted groups of species. However, significant intra-patch SARs were obtained for all groups of species and forest types. A hierarchical approach was successfully applied to scrutinise SARs along a gradient of forest naturalness in intensively managed landscapes. Dominant canopy tree and management intensity were found to reflect differently on distinct species groups as well as to compensate for increasing stand area, buffering SARs among patches, but not within patches. Thus, the maintenance of small semi-natural patches dominated by pines, under extensive practices of forest management, will promote native plant diversity while at the same time contributing to limit the expansion of problematic alien invasive species.
Resumo:
The aim of this study was to analyse the infection dynamics ofAngiostrongylus cantonensisin its possible intermediate hosts over two years in an urban area in the state of Rio de Janeiro where the presence ofA. cantonensis had been previously recorded in molluscs. Four of the seven mollusc species found in the study were exotic.Bradybaena similariswas the most abundant, followed byAchatina fulica, Streptaxissp., Subulina octona, Bulimulus tenuissimus, Sarasinula linguaeformisand Leptinaria unilamellata. Only A. fulicaand B. similariswere parasitised by A. cantonensis and both presented co-infection with other helminths. The prevalence of A. cantonensisin A. fulicawas more than 50% throughout the study. There was an inverse correlation between the population size ofA. fulicaand the prevalence of A. cantonensisand abundance of the latter was negatively related to rainfall. The overall prevalence of A. cantonensisin B. similariswas 24.6%. A. fulicawas the most important intermediary host of A. cantonensisin the studied area andB. similariswas secondary in importance for A. cantonensistransmission dynamics.