985 resultados para Alfven waves
Resumo:
It is proposed that the mathematical analysis of the Alfven wave equation in inhomogeneous magnetic fields which explain the resonance absorption of Alfven surface waves near a resonant layer can also be used to show that the magnetic reconnection process can arise near the zero-frequency resonant layer driven by VLF Alfven surface waves. It is suggested that the associated phenomena of resonant absorption and magnetic reconnection can account for the recent observations of intense magnetic activity in the long-period geomagnetic micropulsation range, at cusp latitudes, during flux transfer events.
Resumo:
Li, Xing, Habbal, S. R., 'Coronal loops heated by turbulence-driven Alfven waves', The Astrophysical Journal, (2003) 598(2) pp.L125-L128 RAE2008
Resumo:
Li, Xing; Lu, Q. M.; Li, B., 'Ion Pickup by Finite Amplitude Parallel Propagating Alfven Waves', The Astrophysical Journal Letters (2007) 661(1) pp.L105-L108 RAE2008
Resumo:
The linear and nonlinear properties of the Rao-dust-magnetohydrodynamic (R-D-MHD) waves in a dusty magnetoplasma are studied. By employing the inertialess electron equation of motion, inertial ion equation of motion, Ampere's law, Faraday's law, and the continuity equation in a plasma with immobile charged dust grains, the linear and nonlinear propagation of two-dimensional R-D-MHD waves are investigated. In the linear regime, the existence of immobile dust grains produces the Rao cutoff frequency, which is proportional to the dust charge density and the ion gyrofrequency. On the other hand, the dynamics of amplitude modulated R-D-MHD waves is governed by the cubic nonlinear Schrodinger equation. The latter has been derived by using the reductive perturbation technique and the two-timescale analysis which accounts for the harmonic generation nonlinearity in plasmas. The stability of the modulated wave envelope against non-resonant perturbations is studied. Finally, the possibility of localized envelope excitations is discussed. (C) 2004 American Institute of Physics.
Resumo:
The Wolf-Rayet (WR) stars are hot luminous objects which are suffering an extreme mass loss via a continuous stellar wind. The high values of mass loss rates and high terminal velocities of the WR stellar winds constitute a challenge to the theories of radiation driven winds. Several authors incorporated magnetic forces to the line driven mechanism in order to explain these characteristics of the wind. Observations indicate that the WR stellar winds may reach, at the photosphere, velocities of the order of the terminal values, which means that an important part of the wind acceleration occurs at the optically thick region. The aim of this study is to analyze a model in which the wind in a WR star begins to be accelerated in the optically thick part of the wind. We used as initial conditions stellar parameters taken from the literature and solved the energy, mass and momentum equations. We demonstrate that the acceleration only by radiative forces is prevented by the general behavior of the opacities. Combining radiative forces plus a flux of Alfven waves, we found in the simulations a fast drop in the wind density profile which strongly reduces the extension of the optically thick region and the wind becomes optically thin too close its base. The understanding how the WR wind initiate is still an open issue. (C) 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Alfven waves have been invoked as an important mechanism of particle acceleration in stellar winds of cool stars. After their identification in the solar wind they started to be studied in winds of stars located in different regions of the FIR diagram. We discuss here some characteristics of these waves and we present a direct application in the acceleration of late-type stellar winds. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The electro-dynamical tethers emit waves in structured denominated Alfven wings. The Derivative Nonlineal Schrödinger Equation (DNLS) possesses the capacity to describe the propagation of circularly polarized Alfven waves of finite amplitude in cold plasmas. The DNLS equation is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In this article is presented a theoretical and numerical analysis when the growth rate of the unstable wave is next to zero considering two damping models: Landau and resistive. The DNLS equation presents a chaotic dynamics when is consider only three wave truncation. The evolution to chaos possesses three routes: hard transition, period-doubling and intermittence of type I.
Resumo:
It is shown that, although the mathematical analysis of the Alfven-wave equation does not show any variation at non-zero or zero singular points, the role of surface waves in the physical mechanism of resonant absorption of Alfven waves is very different at these points. This difference becomes even greater when resistivity is taken into account. At the neutral point the zero-frequency surface waves that are symmetric surface modes of the structured neutral layer couple to the tearing mode instability of the layer. The importance of this study for the energy balance in tearing modes and the association of surface waves with driven magnetic reconnection is also pointed out.
Resumo:
The stability (evolutionarity) problem for a kind of MHD shock waves is discussed in this paper. That is to solve the interaction problem of MHD shock waves with (2-dimensional) oblique incident disturbances. In other words, the result of gasdynamic shocks is generalized to the case of MHD shocks. The previous conclusion of stability theory of MHD shock waves obtained from the solution of interaction problem of MHD shock wave with (one-dimensional) normal shock wave is that only fast and slow shocks are stable, and intermediate shocks are unstable. However, the results of this paper show that when the small disturbances are the Alfven waves a new stability condition which is related to the parameters in front of and behind the shock wave is derived. When the disturbances are entropy wave and fast and slow magneto acoustic waves the stability condition is related to the frequency of small disturbances. As the limiting ease, i. e. when a normal incident (reflection, refraction) is consid...更多ered, the fast and slow shocks are unstable. The results also show that the conclusion drawn by Kontorovich is invalid for the stability theory of shock waves.
Resumo:
Alfven wave phase mixing is an extensively studied mechanism for dissipating wave energy in an inhomogeneous medium. It is common in the vast majority of phase mixing papers to assume that even though short scale lengths and steep gradients develop as a result of phase mixing, nonlinear wave coupling does not occur. However, weakly nonlinear studies have shown that phase mixing generates magnetoacoustic modes. Numerical results are presented which show the nonlinear generation of magnetosonic waves by Alfven wave phase mixing. The efficiency of the effect is determined by the wave amplitude, the frequency of the Alfven waves and the gradient in the background Alfven speed. Weakly nonlinear theory has shown that the amplitude of the fast magnetosonic wave grows linearly in time. The simulations presented in this paper extend this result to later times and show saturation of the fast magnetosonic component at amplitudes much lower than that of the Alfven wave. For the case when Alfven waves are driven at the boundary, simulating photospheric footpoint motion, a clear modulation of the saturated amplitude is observed. All the results in this paper are for a low amplitude (less than or equal to 0.1), single frequency Alfven wave and a uniform background magnetic field in a two dimensional domain. For this simplified geometry, and with a monochromatic driver, we concluded that the nonlinear generation of fast modes has little effect on classical phase mixing.
Resumo:
The flow of energy through the solar atmosphere and the heating of the Sun's outer regions are still not understood. Here, we report the detection of oscillatory phenomena associated with a large bright-point group that is 430,000 square kilometers in area and located near the solar disk center. Wavelet analysis reveals full-width half-maximum oscillations with periodicities ranging from 126 to 700 seconds originating above the bright point and significance levels exceeding 99%. These oscillations, 2.6 kilometers per second in amplitude, are coupled with chromospheric line-of-sight Doppler velocities with an average blue shift of 23 kilometers per second. A lack of cospatial intensity oscillations and transversal displacements rules out the presence of magneto-acoustic wave modes. The oscillations are a signature of Alfvén waves produced by a torsional twist of ±22 degrees. A phase shift of 180 degrees across the diameter of the bright point suggests that these torsional Alfvén oscillations are induced globally throughout the entire brightening. The energy flux associated with this wave mode is sufficient to heat the solar corona.
Resumo:
In this Letter, we demonstrate how the observation of broadband frequency propagating torsional Alfvén waves in chromospheric magnetic flux tubes can provide valuable insight into their magnetic field structure. By implementing a full nonlinear three-dimensional magnetohydrodynamic numerical simulation with a realistic vortex driver, we demonstrate how the plasma structure of chromospheric magnetic flux tubes can act as a spatially dependent frequency filter for torsional Alfvén waves. Importantly, for solar magnetoseismology applications, this frequency filtering is found to be strongly dependent on magnetic field structure. With reference to an observational case study of propagating torsional Alfvén waves using spectroscopic data from the Swedish Solar Telescope, we demonstrate how the observed two-dimensional spatial distribution of maximum power Fourier frequency shows a strong correlation with our forward model. This opens the possibility of beginning an era of chromospheric magnetoseismology, to complement the more traditional methods of mapping the magnetic field structure of the solar chromosphere.
Resumo:
Alfvén waves are considered to be viable transporters of the non-thermal energy required to heat the Sun's quiescent atmosphere. An abundance of recent observations, from state-of-the-art facilities, have reported the existence of Alfvén waves in a range of chromospheric and coronal structures. Here, we review the progress made in disentangling the characteristics of transverse kink and torsional linear magnetohydrodynamic (MHD) waves. We outline the simple, yet powerful theory describing their basic properties in (non-)uniform magnetic structures, which closely resemble the building blocks of the real solar atmosphere.
Resumo:
Using advanced numerical magneto-hydrodynamic simulations of the magnetized solar photosphere, including non-gray radiative transport and a non-ideal equation of state, we analyze plasma motions in photospheric magnetic vortices. We demonstrate that apparent vortex-like motions in photospheric magnetic field concentrations do not exhibit "tornado"-like behavior or a "bath-tub" effect. While at each time instance the velocity field lines in the upper layers of the solar photosphere show swirls, the test particles moving with the time-dependent velocity field do not demonstrate such structures. Instead, they move in a wave-like fashion with rapidly changing and oscillating velocity field, determined mainly by magnetic tension in the magnetized intergranular downflows. Using time-distance diagrams, we identify horizontal motions in the magnetic flux tubes as torsional Alfvén perturbations propagating along the nearly vertical magnetic field lines with local Alfvén speed.