36 resultados para Albumins.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The (+)-enantiomer of the polyphenolic binaphthyl gossypol, has been shown to be a useful CD probe of interactions with human and bovine serum albumin. (+)-Gossypol binds to albumin with same affinity as recemic (±)-gossypol, as shown by fluorescence quenching, and also displaces bilirubin from its albumin binding site. The CD characteristics of bound gossypol are different in the case of the two proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Racemic gossypol has been resolved by HPLC separation of diastereomeric (−) norepinephrine adducts on a reverse-phase column. The binding constants for the interaction of the three gossypol forms (+, − and −) with human and bovine serum albumins have been determined by fluoresence quenching studies. The KD values demonstrate that all three forms bind equally effectively to the two proteins, suggesting an absence of chiral discrimination in albumin-gossypol interactions. Circular dichroism studies of (+)-gossypol binding to the model dibasic peptides, Boc-Lys-Pro-Aib-Lys-NHMe and gramicidin S, suggesting that distortions of binaphthyl geometry may occur only for specific orientations of interacting residues at the receptor site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human serum albumin (HSA) derivatized with cis-aconitic anhydride was covalently coupled to liposomes with a size of approximately 100 nm [polyaconitylated HSA (Aco-HSA) liposomes]. Within 30 min after injection into a rat, Aco-HSA liposomes were completely cleared from the blood and almost exclusively taken up by the liver, whereas in control liposomes 80% was still present in the blood at that time. Endothelial cells were shown to account for almost two-thirds of the hepatic uptake of the Aco-HSA liposomes, the remainder being recovered mainly in the liver macrophages (Kupffer cells). With fluorescently labeled liposomes it was shown that the Aco-HSA liposomes target a vast majority (>85%) of the cells in the endothelial cell population. Control liposomes were not taken up to a significant extent by the endothelial cells. Uptake of Aco-HSA liposomes by both endothelial and Kupffer cells was inhibited by preinjection with polyinosinic acid, indicating the involvement of scavenger receptors in the uptake process. The uptake of Aco-HSA liposomes by liver endothelial cells was dependent on liposome size; with increasing liposome diameter endothelial cell uptake decreased in favor of Kupffer cell uptake. We have demonstrated that massive in vivo targeting of liposomes to a defined cell population other than macrophages is possible. Aco-HSA liposomes thus may represent an attractive drug carrier system for treatment of various liver or liver endothelium-associated disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malnutrition is common in children with end-stage liver disease (ESLD) awaiting orthotopic liver transplantation (OLT), and nutritional support is assuming an important role in preoperative management. To evaluate preoperative nutritional therapy, 19 children (median age 1.25 y) with ESLD awaiting OLT were prospectively studied. Two high-energy, isoenergetic and isonitrogenous nutritional formulations delivered nasogastrically were compared: a branched-chain amino acid (BCAA)-enriched semielemental formulation and a matched standard semielemental formulation. Twelve of 19 patients completed a randomized controlled study before OLT and 10 of 19 completed a full crossover study. Improvements in weight and height occurred during the BCAA supplements, with no statistical change on the standard formulation. Significant increases in total body potassium, midupper arm circumference, and subscapular skinfold thickness occurred during the BCAA supplements, whereas no significant changes occurred during the standard formulation period. Significantly fewer albumin infusions were required during the BCAA supplement. These findings suggest that BCAA-enriched formulas have advantages over standard semielemental formulas in improving nutritional status in children with ESLD. and are deserving of wider application and study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determination of testosterone and related compounds in body fluids is of utmost importance in doping control and the diagnosis of many diseases. Capillary electromigration techniques are a relatively new approach for steroid research. Owing to their electrical neutrality, however, separation of steroids by capillary electromigration techniques requires the use of charged electrolyte additives that interact with the steroids either specifically or non-specifically. The analysis of testosterone and related steroids by non-specific micellar electrokinetic chromatography (MEKC) was investigated in this study. The partial filling (PF) technique was employed, being suitable for detection by both ultraviolet spectrophotometry (UV) and electrospray ionization mass spectrometry (ESI-MS). Efficient, quantitative PF-MEKC UV methods for steroid standards were developed through the use of optimized pseudostationary phases comprising surfactants and cyclodextrins. PF-MEKC UV proved to be a more sensitive, efficient and repeatable method for the steroids than PF-MEKC ESI-MS. It was discovered that in PF-MEKC analyses of electrically neutral steroids, ESI-MS interfacing sets significant limitations not only on the chemistry affecting the ionization and detection processes, but also on the separation. The new PF-MEKC UV method was successfully employed in the determination of testosterone in male urine samples after microscale immunoaffinity solid-phase extraction (IA-SPE). The IA-SPE method, relying on specific interactions between testosterone and a recombinant anti-testosterone Fab fragment, is the first such method described for testosterone. Finally, new data for interactions between steroids and human and bovine serum albumins were obtained through the use of affinity capillary electrophoresis. A new algorithm for the calculation of association constants between proteins and neutral ligands is introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofunctionalization of noble metal nanoparticles like Ag, Au is essential to obtain biocompatibility for specific biomedical applications. Silver nanciparticles are being increasingly used in bio-sensing applications owing to excellent optoelectronic properties. Among the serum albumins, the most abundant proteins in plasma, a wide range of physiological functions of Bovine Serum Albumin (BSA) has made it a model system for biofunctionalization. In absence of adequate prior reports, this study aims to investigate the interaction between silver nanoparticles and BSA. The interaction of BSA [0.05-0.85% concentrations] with Ag nanoparticles [50 ppm concentration] in aqueous dispersion was Studied through UV-vis spectral changes, morphological and surface structural changes. At pH 7, which is More than the isoelectric point of BSA, a decrease in absorbance at plasmon peak of uninteracted nanciparticles (425 mn) was noted till 0.45% BSA, beyond that a blue shift towards 410 urn was observed. The blue shift may be attributed to enhanced electron density on the particle surfaces. Increasing pH to 12 enhanced the blue shift further to 400 rim. The conformational changes in BSA at alkaline pH ranges and consequent hydrophobic interactions also played an important role. The equilibrium adsorption data fitted better to Freundlich isotherm compared to Langmuir Curve. The X-ray diffraction study revealed complete coverage of Ag nanoparticles by BSA. The scanning electron microscopic study of the interacted nanoparticles was also carried Out to decipher morphological changes. This study established that tailoring the concentration of BSA and pH of the interaction it was possible to reduce aggregation of nanoparticles. Biofunctionalized Ag nanoparticles with reduced aggregation will be more amenable towards bio-sensing applications. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os antipsicóticos são drogas utilizadas no tratamento de muitos transtornos psiquiátricos, sendo classificados em dois grupos: típicos e atípicos. Os típicos formam o grupo de drogas que bloqueiam especialmente os receptores de dopamina e, por isto, causam efeitos colaterais característicos, que se manifestam através de sintomas extrapiramidais e podem terminar em discinesia tardia. Os atípicos apresentam eficácia antipsicótica similar à dos antipsicóticos típicos, mas produzem menos efeitos colaterais extrapiramidais e não causam discinesia tardia. Os antipsicóticos se ligam às proteínas plasmáticas, principalmente a albumina, a qual representa cerca de 60% do total das proteínas no soro humano. Neste trabalho estudamos os processos de interação de duas drogas antipsicóticas atípicas, risperidona e sulpirida, com as albuminas séricas humana (HSA) e bovina (BSA), através da técnica de supressão da fluorescência intrínseca do triptofano. A partir dos espectros de fluorescência, a análise dos dados foi feita obtendo-se os gráficos e as constantes de Stern-Volmer. A análise da supressão da fluorescência foi feita a partir da média aritmética dos dados oriundos dos experimentos realizados em cada condição adotada. Como a molécula da sulpirida é fluorescente desenvolvemos uma modelagem matemática do processo de interação, que nos permitiu então obter os dados referentes à supressão da fluorescência da proteína. Os resultados mostraram que a risperidona e a sulpirida suprimem a fluorescência de ambas albuminas por um processo de quenching estático, formando complexos droga-albumina. A risperidona tem uma afinidade com a HSA cerca de 6,5 vezes maior do que a sulpirida, a 37 oC. As constantes de associação calculadas para a interação risperidona-HSA, através da Teoria de Stern-Volmer, foram 1,43 ( 0,05) x 105 M-1, a 37 C, e 2,56 ( 0,09) x 105 M-1, a 25 C1; e para a sulpirida, 2,20 ( 0,08) x 104 M-1, a 37 C, e 5,46 ( 0,20) x 104 M-1, a 25 C. Como a taxa de quenching da BSA foi maior do que a da HSA, sugerimos que o sítio primário para a risperidona nas albuminas esteja localizado mais próximo ao domínio do triptofano 134 da BSA do que do domínio do triptofano 212 da HSA. O mesmo sugerimos com relação ao sítio para a sulpirida a 37 C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Albumin, the most abundant protein components of blood plasma, is synthesized and secreted by liver cells in vertebrates. Recently, it was demonstrated that frog Bombina maxima albumin is also expressed in skin. Both B. maxima albumins from skin and serum

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Albumin, the most abundant protein components of blood plasma, is synthesized and secreted by liver cells in vertebrates. Recently, it was demonstrated that frog Bombina maxima albumin is also expressed in skin. Both B. maxima albumins from skin and serum (BmA-skin and BmAserum) have similar biochemical characteristics except that the former contains haem b. Present studies showed that BmA-skin exhibited cytotoxic activity on H9 and C8166 cells. Pretreated with hemin to induce erythroid differentiation, K562 cells lost their resistance to cytotoxicity of BmAskin. After treating cells with BmA-skin for 48 h, 50 percentage cytotoxic concentrations (CC50) of BmA-skin on H9, C8166 and hemin-treated K562 cells were 1.31±0.09, 1.59±0.08 and 2.28±0.06 μM, respectively. The cell death induced by BmA-skin was mediated by apoptosis of the tested cell lines, as demonstrated by nuclear morphological changes, DNA fragmentation and DNA hypodiploidy of apoptosis cells. At BmA-skin concentration of 2 μM, 27.3%, 19.7% and 17.8% of H9, C8166 and hemin-treated K562 cells were found to be apoptotic. In contrast, BmA-serum possessed no cytotoxic and apoptosis-inducing activity on all the cell lines tested, even with concentration used up to 15 μM. These results indicated that bound haem b in BmA-skin contributed significantly to its cytotoxic and apoptosis-inducing activity on the cell lines assayed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suppression of angiogenesis during diabetes is a recognized phenomenon but is less appreciated within the context of diabetic retinopathy. The current study has investigated regulation of retinal angiogenesis by diabetic serum and determined if advanced glycation end products (AGEs) could modulate this response, possibly via AGE-receptor interactions. A novel in vitro model of retinal angiogenesis was developed and the ability of diabetic sera to regulate this process was quantified. AGE-modified serum albumin was prepared according to a range of protocols, and these were also analyzed along with neutralization of the AGE receptors galectin-3 and RAGE. Retinal ischemia and neovascularization were also studied in a murine model of oxygen-induced proliferative retinopathy (OIR) in wild-type and galectin-3 knockout mice (gal3(-/-)) after perfusion of preformed AGEs. Serum from nondiabetic patients showed significantly more angiogenic potential than diabetic serum (P <0.0001) and within the diabetic group, poor glycemic control resulted in more AGEs but less angiogenic potential than tight control (P <0.01). AGE-modified albumin caused a dose-dependent inhibition of angiogenesis (P <0.001), and AGE receptor neutralization significantly reversed the AGE-mediated suppression of angiogenesis (P <0.01). AGE-treated wild-type mice showed a significant increase in inner retinal ischemia and a reduction in neovascularization compared with non-AGE controls (P <0.001). However, ablation of galectin-3 abolished the AGE-mediated increase in retinal ischemia and restored the neovascular response to that seen in controls. The data suggest a significant suppression of angiogenesis by the retinal microvasculature during diabetes and implicate AGEs and AGE-receptor interactions in its causation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Biotecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of self-assembly as a strategy for the synthesis has been confined largely to molecules, because of the importance of manipulating the structure of matter at the molecular scale. We have investigated the influence of temperature and pH, in addition to the concentration of the capping agent used for the formation of the nano-bio conjugates. For example, the formation of the narrower size distribution of the nanoparticles was observed with the increase in the concentration of the protein, which supports the fact that γ-globulin acts both as a controller of nucleation as well as stabiliser. As analyzed through various photophysical, biophysical and microscopic techniques such as TEM, AFM, C-AFM, SEM, DLS, OPM, CD and FTIR, we observed that the initial photoactivation of γ-globulin at pH 12 for 3 h resulted in small protein fibres of ca. Further irradiation for 24 h, led to the formation of selfassembled long fibres of the protein of ca. 5-6 nm and observation of surface plasmon resonance band at around 520 nm with the concomitant quenching of luminescence intensity at 680 nm. The observation of light triggered self-assembly of the protein and its effect on controlling the fate of the anchored nanoparticles can be compared with the naturally occurring process such as photomorphogenesis.Furthermore,our approach offers a way to understand the role played by the self-assembly of the protein in ordering and knock out of the metal nanoparticles and also in the design of nano-biohybrid materials for medicinal and optoelectronic applications. Investigation of the potential applications of NIR absorbing and water soluble squaraine dyes 1-3 for protein labeling and anti-amyloid agents forms the subject matter of the third chapter of the thesis. The study of their interactions with various proteins revealed that 1-3 showed unique interactions towards serum albumins as well as lysozyme. 69%, 71% and 49% in the absorption spectra as well as significant quenching in the fluorescence intensity of the dyes 1-3, respectively. Half-reciprocal analysis of the absorption data and isothermal titration calorimetric (ITC) analysis of the titration experiments gave a 1:1 stoichiometry for the complexes formed between the lysozyme and squaraine dyes with association constants (Kass) in the range 104-105 M-1. We have determined the changes in the free energy (ΔG) for the complex formation and the values are found to be -30.78, -32.31 and -28.58 kJmol-1, respectively for the dyes 1, 2 and 3. Furthermore, we have observed a strong induced CD (ICD) signal corresponding to the squaraine chromophore in the case of the halogenated squaraine dyes 2 and 3 at 636 and 637 nm confirming the complex formation in these cases. To understand the nature of interaction of the squaraine dyes 1-3 with lysozyme, we have investigated the interaction of dyes 1-3 with different amino acids. These results indicated that the dyes 1-3 showed significant interactions with cysteine and glutamic acid which are present in the side chains of lysozyme. In addition the temperature dependent studies have revealed that the interaction of the dye and the lysozyme are irreversible. Furthermore, we have investigated the interactions of these NIR dyes 1-3 with β- amyloid fibres derived from lysozyme to evaluate their potential as inhibitors of this biologically important protein aggregation. These β-amyloid fibrils were insoluble protein aggregates that have been associated with a range of neurodegenerative diseases, including Huntington, Alzheimer’s, Parkinson’s, and Creutzfeldt-Jakob diseases. We have synthesized amyloid fibres from lysozyme through its incubation in acidic solution below pH 4 and by allowing to form amyloid fibres at elevated temperature. To quantify the binding affinities of the squaraine dyes 1-3 with β-amyloids, we have carried out the isothermal titration calorimetric (ITC) measurements. The association constants were determined and are found to be 1.2 × 105, 3.6× 105 and 3.2 × 105 M-1 for the dyes, 1-3, respectively. To gain more insights into the amyloid inhibiting nature of the squaraine dyes under investigations, we have carried out thioflavin assay, CD, isothermal titration calorimetry and microscopic analysis. The addition of the dyes 1-3 (5μM) led to the complete quenching in the apparent thioflavin fluorescence, thereby indicating the destabilization of β-amyloid fibres in the presence of the squaraine dyes. Further, the inhibition of the amyloid fibres by the squaraine dyes 1-3, has been evidenced though the DLS, TEM AFM and SAED, wherein we observed the complete destabilization of the amyloid fibre and transformation of the fibre into spherical particles of ca. These results demonstrate the fact that the squaraine dyes 1-3 can act as protein labeling agents as well as the inhibitors of the protein amyloidogenesis. The last chapter of the thesis describes the synthesis and investigation of selfassembly as well as bio-imaging aspects of a few novel tetraphenylethene conjugates 4-6.Expectedly, these conjugates showed significant solvatochromism and exhibited a hypsochromic shift (negative solvatochromism) as the solvent polarity increased, and these observations were justified though theoretical studies employing the B3LYP/6-31g method. We have investigated the self-assembly properties of these D-A conjugates though variation in the percentage of water in acetonitrile solution due to the formation of nanoaggregates. Further the contour map of the observed fluorescence intensity as a function of the fluorescence excitation and emission wavelength confirmed the formation of J-type aggregates in these cases. To have a better understanding of the type of self-assemblies formed from the TPE conjugates 4-6, we have carried out the morphological analysis through various microscopic techniques such as DLS, SEM and TEM. 70%, we observed rod shape architectures having ~ 780 nm in diameter and ~ 12 μM in length as evidenced through TEM and SEM analysis. We have made similar observations with the dodecyl conjugate 5 at ca. 70% and 50% water/acetonitrile mixtures, the aggregates formed from 4 and 5 were found to be highly crystalline and such structures were transformed to amorphous nature as the water fraction was increased to 99%. To evaluate the potential of the conjugate as bio-imaging agents, we have carried out their in vitro cytotoxicity and cellular uptake studies though MTT assay, flow cytometric and confocal laser scanning microscopic techniques. Thus nanoparticle of these conjugates which exhibited efficient emission, large stoke shift, good stability, biocompatibility and excellent cellular imaging properties can have potential applications for tracking cells as well as in cell-based therapies. In summary we have synthesized novel functional organic chromophores and have studied systematic investigation of self-assembly of these synthetic and biological building blocks under a variety of conditions. The investigation of interaction of water soluble NIR squaraine dyes with lysozyme indicates that these dyes can act as the protein labeling agents and the efficiency of inhibition of β-amyloid indicate, thereby their potential as anti-amyloid agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical composition and fractional distribution of protein isolates prepared from species of Mucuna bean were studied. Using six different extraction media, the yield of protein based on the Kjeldahl procedure varied from 8% to 34%, and the protein content varied from 75% to 95%. When the yields were high, the colour of the isolates generally tended to be dark and unsatisfactory. Hence, the use of chemical treatments and high pressure processing were explored. The solubility maxima for the protein isolates in water were found to occur at pH values of 2.0 and 11.0, while the pH corresponding to minimum solubility (i.e. isoelectric region) occurred at pH values of 4.0 and 5.0. The total essential amino acid in the isolates ranged from 495 to 557 mg g(-1) protein, which compares favourably with the recommended level for pre-school and school children. Methionine and cysteine were the limiting amino acids. A key nutritional attribute of the protein isolates was its high lysine content. The isolate can therefore complement cereal-based foods which are deficient in lysine. The proteins mainly consisted of albumins, glutelins and globulins. Prolamins were only present in trace concentration (< 0.3%). Gel filtration chromatograms of the isolates indicated the presence of major protein fractions with molecular weights of 40 and 15 kDa, while gel electrophoresis (SDS-PAGE) indicated a major broad zone with molecular weights of 36 +/- 7 and 17.3 +/- 13 kDa. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linseed is an important oilseed consumed raw as nutritional supplement, that although represents a rich source of nutrients, its nutritional value could be impaired due to the presence of antinutritional factors. In this study, protein fractions from raw linseed flour were extracted and isolated being obtained 12% of albumins, 82% of globulins, 5% of glutelins and 1% of prolamins. These proteins were visualized by SDS-PAGE and albumins showed low molecular mass protein bands around 21 kDa and minor bands, similar to that of trypsin inhibitor; Globulins presented protein bands with high molecular masses, which possibly are constituents of multimeric proteins, such as legumins. After determination of the centesimal composition of raw linseed, it was used as exclusive protein source for young rats to evaluate its effect on animal growth. The results showed negative effects on rat growth (weight gain 73% less than the control group) and reduction of intestinal villus (35%), that could be related with in vitro and in vivo globulin digestibility and proteinaceous antinutritional factors (mammalian digestive enzymes inhibitors and lectins) in albumin fraction. Native globulins showed, by SDS-PAGE, low susceptibility in vitro to trypsin and chymotrypsin, however presented high degradation by pancreatin. Thermal treatment of globulins for 5 and 15 minutes at 100ºC improved considerably its digestibility by trypsin and pancreatin. Globulins presented 93.2% in vivo digestibility, similar to the control protein. Albumin fraction had high trypsin inhibition activity (100%) and chymotrypsin inhibition of 28.3%; haemagglutinating activity was not detected. The results of this study indicate the negative action of trypsin inhibitors on animal growth, but can not be discarded its combined action with other antinutritional factors, which could compromise the raw linseed utilization as an alternative food

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to isolate the protein fractions from chickpea, var. IAC-Marrocos, as well as to evaluate its in vivo nutritional protein quality. Among the proteins, albumins showed better nutritional value in the in vivo assays and amino acid contents, despite their higher trypsin inhibitor contents. Trypsin inhibitors were found to be heat labile in all samples, but the digestibility results for unheated and heated flour and albumins suggest that their contents are not very decisive. The PER values for casein (not supplemented) were very similar to those of heated flour and unheated or heated albumin and total globulins. The albumin and glutelin fractions showed the best results for PDCAAS, however, lower than those of casein. Despite the high digestibility of the globulin the very low essential amino acid content lowered its PDCAAS, and it had the lowest values.