942 resultados para Agricultural Vehicles


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Para avaliar o comportamento da suspensão do pulverizador autopropelido, foram desenvolvidos modelos físicos e matemáticos em função da excitação ocasionada pelas irregularidades do solo. Neste trabalho, estas irregularidades são representadas por obstáculos de uma pista normalizada segundo a norma ISO 5008. As equações do movimento são obtidas a partir dos modelos matemáticos de meio veículo. As simulações numéricas são executadas nos softwares Matlab® e Simulink®. A partir da entrada conhecida, podem-se determinar as características dos elementos da suspensão para obter níveis desejáveis de conforto e segurança. Foram analisadas quatro diferentes configurações do sistema, variando-se a relação de rigidez a partir de um modelo considerado padrão. Constatou-se que o aumento da relação de rigidez resulta na redução da aceleração vertical e no aumento do curso da suspensão, melhorando o conforto e diminuindo a segurança.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil compaction has been recognised as the greatest problem in terms of damage to Australia's soil resource. Compaction by tractor and harvester tyres, related to trafficking of wet soil, is one source of the problem. In this paper an array of soil properties was measured before and immediately after the application of a known compaction force to a wet Vertisol, A local grain harvester was used on soil that was just trafficable; a common scenario at harvest. The primary aim was to determine the changes in various soil properties in order to provide a benchmark against which the effectiveness of future remedial treatments could be evaluated. A secondary aim was a comparison of the measurements' efficiency to assess a soil's structural degradation status. Also assessed was the subsequent effect of the applied compaction on wheat growth and yield in the following cropping season. Nine of the soil properties measured gave statistically significant differences as a result of the soil compaction. Differences were mostly restricted to the top 0.2 m of the soil. The greatest measured depth of effect was decreased soil porosity to 0.4 m measured from intact soil clods. There was 72% emergence of the wheat crop planted into the compact soil and 93% in the uncompact soil. Wheat yield, however, was not affected by the compaction. This may demonstrate that wheat, growing on a full profile of stored soil water as did the current crop, may be little affected by compaction, Also, wheat may have potential to facilitate rapid repair of the damage in a Vertisol such as the current soil by drying the topsoil between rainfall events so increasing shrinking and swelling cycles. If this is true, then sowing a suitable crop species in a Vertisol may be a better option than tillage for repairing compaction damage by agricultural traffic. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Australian farmers have used precision agriculture technology for many years with the use of ground – based and satellite systems. However, these systems require the use of vehicles in order to analyse a wide area which can be time consuming and cost ineffective. Also, satellite imagery may not be accurate for analysis. Low cost of Unmanned Aerial Vehicles (UAV) present an effective method of analysing large plots of agricultural fields. As the UAV can travel over long distances and fly over multiple plots, it allows for more data to be captured by a sampling device such as a multispectral camera and analysed thereafter. This would allow farmers to analyse the health of their crops and thus focus their efforts on certain areas which may need attention. This project evaluates a multispectral camera for use on a UAV for agricultural applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A current trend in the agricultural area is the development of mobile robots and autonomous vehicles for precision agriculture (PA). One of the major challenges in the design of these robots is the development of the electronic architecture for the control of the devices. In a joint project among research institutions and a private company in Brazil a multifunctional robotic platform for information acquisition in PA is being designed. This platform has as main characteristics four-wheel propulsion and independent steering, adjustable width, span of 1,80m in height, diesel engine, hydraulic system, and a CAN-based networked control system (NCS). This paper presents a NCS solution for the platform guidance by the four-wheel hydraulic steering distributed control. The control strategy, centered on the robot manipulators control theory, is based on the difference between the desired and actual position and considering the angular speed of the wheels. The results demonstrate that the NCS was simple and efficient, providing suitable steering performance for the platform guidance. Even though the simplicity of the NCS solution developed, it also overcame some verified control challenges in the robot guidance system design such as the hydraulic system delay, nonlinearities in the steering actuators, and inertia in the steering system due the friction of different terrains. Copyright © 2012 Eduardo Pacincia Godoy et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to develop a methodology for the collection, transfer, storage and processing of vibration levels emitted in jobs occupied in agricultural machinery. The reason of this work is the study the vibration dose applied to operators of heavy vehicles and its relation to occupational health, linking the still high number of accidents involving farm machinery in relation to overturning (tipping). There is a need for the development and improvement of efficient tools in measuring vibration and tilt machine work, which minimize damage to health and accident risks for operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of pesticides and fertilizers in agricultural areas is of crucial importance for crop yields. The use of aircrafts is becoming increasingly common in carrying out this task mainly because of their speed and effectiveness in the spraying operation. However, some factors may reduce the yield, or even cause damage (e.g., crop areas not covered in the spraying process, overlapping spraying of crop areas, applying pesticides on the outer edge of the crop). Weather conditions, such as the intensity and direction of the wind while spraying, add further complexity to the problem of maintaining control. In this paper, we describe an architecture to address the problem of self-adjustment of the UAV routes when spraying chemicals in a crop field. We propose and evaluate an algorithm to adjust the UAV route to changes in wind intensity and direction. The algorithm to adapt the path runs in the UAV and its input is the feedback obtained from the wireless sensor network (WSN) deployed in the crop field. Moreover, we evaluate the impact of the number of communication messages between the UAV and the WSN. The results show that the use of the feedback information from the sensors to make adjustments to the routes could significantly reduce the waste of pesticides and fertilizers.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irrigation management in large crop fields is a very important practice. Since the farm management costs and the crop results are directly connected with the environmental moisture, water control optimization is a critical factor for agricultural practices, as well as for the planet sustainability. Usually, the crop humidity is measured through the water stress index (WSI), using imagery acquired from satellites or airplanes. Nevertheless, these tools have a significant cost, lack from availability, and dependability from the weather. Other alternative is to recover to ground tools, such as ground vehicles and even static base stations. However, they have an outstanding impact in the farming process, since they can damage the cultivation and require more human effort. As a possible solution to these issues, a rolling ground robot have been designed and developed, enabling non-invasive measurements within crop fields. This paper addresses the spherical robot system applied to intra-crop moisture measurements. Furthermore, some experiments were carried out in an early stage corn field in order to build a geo-referenced WSI map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The road to the automation of the agricultural processes passes through the safe operation of the autonomous vehicles. This requirement is a fact in ground mobile units, but it still has not well defined for the aerial robots (UAVs) mainly because the normative and legislation are quite diffuse or even inexistent. Therefore, to define a common and global policy is the challenge to tackle. This characterization has to be addressed from the field experience. Accordingly, this paper presents the work done in this direction, based on the analysis of the most common sources of hazards when using UAV's for agricultural tasks. The work, based on the ISO 31000 normative, has been carried out by applying a three-step structure that integrates the identification, assessment and reduction procedures. The present paper exposes how this method has been applied to analyze previous accidents and malfunctions during UAV operations in order to obtain real failure causes. It has allowed highlighting common risks and hazardous sources and proposing specific guards and safety measures for the agricultural context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06