808 resultados para Agglomerative Hierarchical Clustering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to explain the notion of clustering and a concrete clustering method- agglomerative hierarchical clustering algorithm. It shows how a data mining method like clustering can be applied to the analysis of stocks, traded on the Bulgarian Stock Exchange in order to identify similar temporal behavior of the traded stocks. This problem is solved with the aid of a data mining tool that is called XLMiner™ for Microsoft Excel Office.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hierarchical clustering method for semantic Web service discovery. This method aims to improve the accuracy and efficiency of the traditional service discovery using vector space model. The Web service is converted into a standard vector format through the Web service description document. With the help of WordNet, a semantic analysis is conducted to reduce the dimension of the term vector and to make semantic expansion to meet the user’s service request. The process and algorithm of hierarchical clustering based semantic Web service discovery is discussed. Validation is carried out on the dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive experiments involving motor execution (ME) and motor imagery (MI) have been intensively studied using functional magnetic resonance imaging (fMRI). However, the functional networks of a multitask paradigm which include ME and MI were not widely explored. In this article, we aimed to investigate the functional networks involved in MI and ME using a method combining the hierarchical clustering analysis (HCA) and the independent component analysis (ICA). Ten right-handed subjects were recruited to participate a multitask experiment with conditions such as visual cue, MI, ME and rest. The results showed that four activation clusters were found including parts of the visual network, ME network, the MI network and parts of the resting state network. Furthermore, the integration among these functional networks was also revealed. The findings further demonstrated that the combined HCA with ICA approach was an effective method to analyze the fMRI data of multitasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the use of hierarchical clustering of flow cytometry data to classify samples of conventional central chondrosarcoma, a malignant cartilage forming tumor of uncertain cellular origin, according to similarities with surface marker profiles of several known cell types. Human primary chondrosarcoma cells, articular chondrocytes, mesenchymal stem cells, fibroblasts, and a panel of tumor cell lines from chondrocytic or epithelial origin were clustered based on the expression profile of eleven surface markers. For clustering, eight hierarchical clustering algorithms, three distance metrics, as well as several approaches for data preprocessing, including multivariate outlier detection, logarithmic transformation, and z-score normalization, were systematically evaluated. By selecting clustering approaches shown to give reproducible results for cluster recovery of known cell types, primary conventional central chondrosacoma cells could be grouped in two main clusters with distinctive marker expression signatures: one group clustering together with mesenchymal stem cells (CD49b-high/CD10-low/CD221-high) and a second group clustering close to fibroblasts (CD49b-low/CD10-high/CD221-low). Hierarchical clustering also revealed substantial differences between primary conventional central chondrosarcoma cells and established chondrosarcoma cell lines, with the latter not only segregating apart from primary tumor cells and normal tissue cells, but clustering together with cell lines from epithelial lineage. Our study provides a foundation for the use of hierarchical clustering applied to flow cytometry data as a powerful tool to classify samples according to marker expression patterns, which could lead to uncover new cancer subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In data mining, efforts have focused on finding methods for efficient and effective cluster analysis in large databases. Active themes of research focus on the scalability of clustering methods, the effectiveness of methods for clustering complex shapes and types of data, high-dimensional clustering techniques, and methods for clustering mixed numerical and categorical data in large databases. One of the most accuracy approach based on dynamic modeling of cluster similarity is called Chameleon. In this paper we present a modified hierarchical clustering algorithm that used the main idea of Chameleon and the effectiveness of suggested approach will be demonstrated by the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we compare Grapholita molesta Busck (Lepidoptera: Tortricidae) populations originated from Brazil, Chile, Spain, Italy and Greece using power spectral density and phylogenetic analysis to detect any similarities between the population macro- and the molecular micro-level. Log-transformed population data were normalized and AR(p) models were developed to generate for each case population time series of equal lengths. The time-frequency/scale properties of the population data were further analyzed using wavelet analysis to detect any population dynamics frequency changes and cluster the populations. Based on the power spectral of each population time series and the hierarchical clustering schemes, populations originated from Southern America (Brazil and Chile) exhibit similar rhythmic properties and are both closer related with populations originated from Greece. Populations from Spain and especially Italy, have higher distance by terms of periodic changes on their population dynamics. Moreover, the members within the same cluster share similar spectral information, therefore they are supposed to participate in the same temporally regulated population process. On the contrary, the phylogenetic approach revealed a less structured pattern that bears indications of panmixia, as the two clusters contain individuals from both Europe and South America. This preliminary outcome will be further assessed by incorporating more individuals and likely employed a second molecular marker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Online music databases have increased significantly as a consequence of the rapid growth of the Internet and digital audio, requiring the development of faster and more efficient tools for music content analysis. Musical genres are widely used to organize music collections. In this paper, the problem of automatic single and multi-label music genre classification is addressed by exploring rhythm-based features obtained from a respective complex network representation. A Markov model is built in order to analyse the temporal sequence of rhythmic notation events. Feature analysis is performed by using two multi-variate statistical approaches: principal components analysis (unsupervised) and linear discriminant analysis (supervised). Similarly, two classifiers are applied in order to identify the category of rhythms: parametric Bayesian classifier under the Gaussian hypothesis (supervised) and agglomerative hierarchical clustering (unsupervised). Qualitative results obtained by using the kappa coefficient and the obtained clusters corroborated the effectiveness of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proceeding of the 3rd International Conference on Fractional Systems and Signals, at Ghent, Belgium

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cape Verde is a tropical oceanic ecosystem, highly fragmented and dispersed, with islands physically isolated by distance and depth. To understand how isolation affects the ecological variability in this archipelago, we conducted a research project on the community structure of the 18 commercially most important demersal fishes. An index of ecological distance based on species relative dominance (Di) is developed from Catch Per Unit Effort, derived from an extensive database of artisanal fisheries. Two ecological measures of distance between islands are calculated: at the species level, DDi, and at the community level, DD (sum of DDi). A physical isolation factor (Idb) combining distance (d) and bathymetry (b) is proposed. Covariance analysis shows that isolation factor is positively correlated with both DDi and DD, suggesting that Idb can be considered as an ecological isolation factor. The effect of Idb varies with season and species. This effect is stronger in summer (May to November), than in winter (December to April), which appears to be more unstable. Species react differently to Idb, independently of season. A principal component analysis on the monthly (DDi) for the 12 islands and the 18 species, complemented by an agglomerative hierarchical clustering, shows a geographic pattern of island organization, according to Idb. Results indicate that the ecological structure of demersal fish communities of Cape Verde archipelago, both in time and space, can be explained by a geographic isolation factor. The analytical approach used here is promising and could be tested in other archipelago systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study examines the repertory of liturgical chant known as St. Petersburg Court Chant which emerged within the Imperial Court of St. Petersburg, Russia, and appeared in print in a number of revisions during the course of the 19th century, eventually to spread throughout the Russian Empire and even abroad. The study seeks answers to questions on the essence and composition of Court Chant, its history and liturgical background, and most importantly, its musical relationship to other repertories of Eastern Slavic chant. The research questions emerge from previous literary accounts of Court Chant (summarized in the Introduction), which have tended to be inaccurate and generally not based on critical research. The study is divided into eight main chapters. Chapter 1 provides a survey of the history of Eastern Slavic chant and the Imperial Court Chapel of St. Petersburg until 1917, with special emphasis on the history of singing traditional chant in polyphony, the status of the Court Chapel as a government authority, and its endeavours in publishing church music. Chapter 2 deals with the liturgical background of Eastern chant, the chant genres, and main repertories of Eastern Slavic chant. Chapter 3 concentrates on chant sources: it introduces the musical notations utilised, after which a typology of chant books is presented. The discussion continues with a survey of the sources of Court Chant and their content, the specimens selected for closer analysis, the comparative materials from other repertories, and ends with a commentary on some chant sources that have been excluded. The comparative sources include a specimen from around the beginning of the 12th century, a few manuscripts from the 17th century, and printed and manuscript chant books from the early 18th to early 20th century, covering the geographical area that delimits to the western Ukraine, Astrakhan, Nizhny Novgorod, and the Solovetsky Monastery. Chapter 4 presents the approach and methods used in the subsequent analytical comparisons. After a survey of the pitch organization of Eastern Slavic chant, the customary harmonization strategy of traditional chant polyphony is examined, according to which a method for meaningful analysis of the harmony is proposed. The method is based on the observation that the harmonic framework of chant polyphony derives from the standard pitch collection of monodic chant known as the Church Gamut, specific pitches of which form eight harmonic regions that behave like the usual tonalities of major and harmonic minor. Because of the considerable quantity of comparative chant forms, computer-assisted statistical methods are applied to the analysis of chant melodies. The primary chant forms and their respective comparative forms have been pre-processed into reduced chant prototypes and divided into redactions. The analyses are carried out by measuring the formal dissimilarities of the primary chant forms of the Court Chant repertory against each comparative form, and also by measuring the reciprocal dissimilarities of all chant versions in a redaction, the results of which are subjected to agglomerative hierarchical clustering in order to find out how the chant forms relate to each other. The dissimilarities are determined by applying a metric dissimilarity function that is based on the Levenshtein Distance. Chapter 5 provides the melodic and harmonic analyses of generic chants (chants used for multiple texts of different lengths), i.e., chants for stichera samoglasny and troparia, Chapter 6 of pseudo-generic chants (chants that are used for multiple texts but with certain restrictions), i.e., chants for heirmoi, prokeimena, and three other hymns, and Chapter 7 of non-generic chants, covering nine chants that in the Court repertory are not shared by multiple texts. The results are summarized and evaluated in Chapter 8. Accordingly, it can be established that, contrary to previous conceptions, melodically, Court Chant is in effect a full part of the wider Eastern Slavic chant tradition. Even if it is somewhat detached from the chant versions of the Synodal square-note chant books and the local tradition of Moscow, it is particularly close to chant forms of East Ukraine and some vernacular repertories from Russia. Respectively, the harmonization strategies of Court Chant do not show significant individuality in comparison with those of the available polyphonic comparative sources, the main difference being the part-writing, which generally conforms to western common practice standard, whereas the deviations from this tend to be more significant in other analysed repertories of polyphonic chant. Thus, insofar as the subsequent prevalence of Court Chant is not based on its forceful dissemination by authorities (as suggested in previous literature but for which little tangible evidence could be found in Chapter 1), in the present author’s interpretation, Court Chant attained its dominance principally because musically it was considered sufficiently traditional, and as a chant body supported by the government, was conveniently available in print in serviceable harmonizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.