1000 resultados para Age, 210Lead


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

137Cs and 134Cs as compounds of the radioactive release from the reactor catastrophy of Chernobyl on the 26.04.1986 were deposited into sediments of lakes in Schleswig-Holstein (Germany). Three years later, in autumn 1989, a sediment core was taken from the Großer Plöner See and the distribution of both caesium isotopes was determined. The radiocaesium profiles were dated by 210Pb. The radiocaesium nuclides from Chernobyl diffused into sediment layers which were deposited decades before the catastrophy. The activity of 137Cs from Chernobyl was higher than from the nuclear bomb fallout.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A high-resolution study of benthic foraminiferal assemblages was performed on a ca. eight metre long sediment core from Gullmar Fjord on the west coast of Sweden. The results of 210Pb- and AMS 14C-datings show that the record includes the two warmest climatic episodes of the last 1500 years: the Medieval Warm Period (MWP) and the recent warming of the 20th century. Both periods are known to be anomalously warm and associated with positive NAO winter indices. Benthic foraminiferal successions of both periods are compared in order to find faunal similarities and common denominators corresponding to past climate changes. During the MWP, Adercotryma glomerata, Cassidulina laevigata and Nonionella iridea dominated the assemblages. Judging from dominance of species sensitive to hypoxia and the highest faunal diversity for the last ca. 2400 years, the foraminiferal record of the MWP suggests an absence of severe low oxygen events. At the same time, faunas and d13C values both point to high primary productivity and/or increased input of terrestrial organic carbon into the fjord system during the Medieval Warm Period. Comparison of the MWP and recent warming revealed different trends in the faunal record. The thin-shelled foraminifer N. iridea was characteristic of the MWP, but became absent during the second half of the 20th century. The recent Skagerrak-Kattegat fauna was rare or absent during the MWP but established in Gullmar Fjord at the end of the Little Ice Age or in the early 1900s. Also, there are striking differences in the faunal diversity and absolute abundances of foraminifera between both periods. Changes in primary productivity, higher precipitation resulting in intensified land runoff, different oxygen regimes or even changes in the fjord's trophic status are discussed as possible causes of these faunal differences.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high-resolution sedimentary record from the subarctic Malangen fjord in northern Norway, northeastern North Atlantic has been investigated in order to reconstruct variations in influx of Atlantic Water for the last 2000 years. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. The reconstructions are based on oxygen and carbon isotopic studies of benthic foraminifera from a high accumulation basin in the Malangen fjord, providing subdecadal time resolution. A comparison between instrumental measurements of bottom water temperatures at the core location and the reconstructed temperatures from benthic foraminiferal d18O for the same time period demonstrates that the stable isotope values reflect the bottom water temperatures very well. The reconstructed temperature record shows an overall decline in temperature of c. 1°C from c. 40 BC to ad 1350. This cooling trend is assumed to be driven by an orbital forced reduction in insolation. Superimposed on the general cooling trend are several periods of warmer or colder temperatures. The long-term fluctuations in the Malangen fjord are concurrent with fluctuations of Atlantic Water in the northern North Atlantic. Although they are not directly comparable, comparisons of atmospheric temperatures and marine records, indicate a close coupling between the climate systems. After ad l800 the record shows an unprecedented warming within the last 2000 years.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calcareous nannofossil assemblages of Ocean Drilling Program Hole 963D from the central Mediterranean Sea have been investigated to document oceanographic changes in surface waters. The studied site is located in an area sensitive to large-scale atmospheric and climatic systems and to high- and low-latitude climate connection. It is characterized by a high sedimentation rate (the achieved mean sampling resolution is <70 years) that allowed the Sicily Channel environmental changes to be examined in great detail over the last 12 ka BP. We focused on the species Florisphaera profunda that lives in the lower photic zone. Its distribution pattern shows repeated abundance fluctuations of about 10-15%. Such variations could be related to different primary production levels, given that the study of the distribution of this species on the Sicily Channel seafloor demonstrates the significant correlation to productivity changes as provided by satellite imagery. Productivity variations were quantitatively estimated and were interpreted on the basis of the relocation of the nutricline within the photic zone, led by the dynamics of the summer thermocline. Productivity changes were compared with oceanographic, atmospheric, and cosmogenic nuclide proxies. The good match with Holocene master records, as with ice-rafted detritus in the subpolar North Atlantic, and the near-1500-year periodicity suggest that the Sicily Channel environment responded to worldwide climate anomalies. Enhanced Northern Hemisphere atmospheric circulation, which has been reported as one of the most important forcing mechanisms for Holocene coolings in previous Mediterranean studies, had a remarkable impact on the water column dynamics of the Sicily Channel.