991 resultados para Aerial images
Resumo:
Abstract
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article presents an automatic methodology for extraction of road seeds from high-resolution aerial images. The method is based on a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each one of the road seeds is composed by a sequence of connected road objects, in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. Experiments carried out with high-resolution aerial images showed that the proposed methodology is very promising in extracting road seeds. This article presents the fundamentals of the method and the experimental results, as well.
Resumo:
This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The application of thematic maps obtained through the classification of remote images needs the obtained products with an optimal accuracy. The registered images from the airplanes display a very satisfactory spatial resolution, but the classical methods of thematic classification not always give better results than when the registered data from satellite are used. In order to improve these results of classification, in this work, the LIDAR sensor data from first return (Light Detection And Ranging) registered simultaneously with the spectral sensor data from airborne are jointly used. The final results of the thematic classification of the scene object of study have been obtained, quantified and discussed with and without LIDAR data, after applying different methods: Maximum Likehood Classification, Support Vector Machine with four different functions kernel and Isodata clustering algorithm (ML, SVM-L, SVM-P, SVM-RBF, SVM-S, Isodata). The best results are obtained for SVM with Sigmoide kernel. These allow the correlation with others different physical parameters with great interest like Manning hydraulic coefficient, for their incorporation in a GIS and their application in hydraulic modeling.
Resumo:
This paper presents an automatic methodology for road network extraction from medium-and high-resolution aerial images. It is based on two steps. In the first step, the road seeds (i.e., road segments) are extracted using a set of four road objects and another set of connection rules among road objects. Each road object is a local representation of an approximately straight road fragment and its construction is based on a combination of polygons describing all relevant image edges, according to some rules embodying road knowledge. Each road seed is composed by a sequence of connected road objects in which each sequence of this type can be geometrically structured as a chain of contiguous quadrilaterals. In the second step, two strategies for road completion are applied in order to generate the complete road network. The first strategy is based on two basic perceptual grouping rules, i.e., proximity and collinearity rules, which allow the sequential reconstruction of gaps between every pair of disconnected road segments. This strategy does not allow the reconstruction of road crossings, but it allows the extraction of road centerlines from the contiguous quadrilaterals representing connected road segments. The second strategy for road completion aims at reconstructing road crossings. Firstly, the road centerlines are used to find reference points for road crossings, which are their approximate positions. Then these points are used to extract polygons representing the contours of road crossings. This paper presents the proposed methodology and experimental results. © Pleiades Publishing, Inc. 2006.
Resumo:
In the context of aerial imagery, one of the first steps toward a coherent processing of the information contained in multiple images is geo-registration, which consists in assigning geographic 3D coordinates to the pixels of the image. This enables accurate alignment and geo-positioning of multiple images, detection of moving objects and fusion of data acquired from multiple sensors. To solve this problem there are different approaches that require, in addition to a precise characterization of the camera sensor, high resolution referenced images or terrain elevation models, which are usually not publicly available or out of date. Building upon the idea of developing technology that does not need a reference terrain elevation model, we propose a geo-registration technique that applies variational methods to obtain a dense and coherent surface elevation model that is used to replace the reference model. The surface elevation model is built by interpolation of scattered 3D points, which are obtained in a two-step process following a classical stereo pipeline: first, coherent disparity maps between image pairs of a video sequence are estimated and then image point correspondences are back-projected. The proposed variational method enforces continuity of the disparity map not only along epipolar lines (as done by previous geo-registration techniques) but also across them, in the full 2D image domain. In the experiments, aerial images from synthetic video sequences have been used to validate the proposed technique.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
Autonomous landing is a challenging and important technology for both military and civilian applications of Unmanned Aerial Vehicles (UAVs). In this paper, we present a novel online adaptive visual tracking algorithm for UAVs to land on an arbitrary field (that can be used as the helipad) autonomously at real-time frame rates of more than twenty frames per second. The integration of low-dimensional subspace representation method, online incremental learning approach and hierarchical tracking strategy allows the autolanding task to overcome the problems generated by the challenging situations such as significant appearance change, variant surrounding illumination, partial helipad occlusion, rapid pose variation, onboard mechanical vibration (no video stabilization), low computational capacity and delayed information communication between UAV and Ground Control Station (GCS). The tracking performance of this presented algorithm is evaluated with aerial images from real autolanding flights using manually- labelled ground truth database. The evaluation results show that this new algorithm is highly robust to track the helipad and accurate enough for closing the vision-based control loop.
Resumo:
This paper presents the results of the planform stability classification for the headland-bay beaches of the State of Santa Catarina and of the Northern Coast of São Paulo, based on the application of the Parabolic Bay-Shape Equation (PBSE) to aerial images of the beaches, using the software MEPBAY®. For this purpose, georeferenced mosaics of the QuickBird2® satellite imagery (for the State of Santa Catarina) and vertical aerial photographs (for the northern coast of São Paulo State) were used. Headland-bay beach planform stability can be classified as: (1) in static equilibrium, (2) in dynamic equilibrium, (3) unstable or (4) in a state of natural beach reshaping. Static equilibrium beaches are the most frequent along the coast of the State of Santa Catarina and the Northern Shore of São Paulo, notably along the most rugged sectors of the coast and those with experiencing lower fluvial discharge. By comparison, dynamic equilibrium beaches occur primarily on the less rugged sectors of the coast and along regions with higher fluvial discharge. Beaches in a state of natural beach reshaping have only been found in SC, associated with stabilized estuarine inlets or port breakwaters. However, it is not possible to classify any of these beaches as unstable because only one set of images was used. No clear relation was observed between a beach's planform stability and other classification factors, such as morphodynamics or orientation.
Resumo:
The depositional stratigraphy of within-channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular `unit' bars and complex `compound' bars), as well as the infill of individual channels (herein termed `channel fills'). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within-channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1 3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (<1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground-penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain-size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object-based models of sandy braided river alluvial architecture.
Resumo:
Finland’s rural landscape has gone through remarkable changes from the 1950’s, due to agricultural developments. Changed farming practices have influenced especially traditional landscape management, and modifications in the arable land structure and grasslands transitions are notable. The review of the previous studies reveal the importance of the rural landscape composition and structure to species and landscape diversity, whereas including the relevance in presence of the open ditches, size of the field and meadow patches, topology of the natural and agricultural landscape. This land-change study includes applying remote sensed data from two time series and empirical geospatial analysis in Geographic Information Systems (GIS). The aims of this retrospective research is to detect agricultural landscape use and land cover change (LULCC) dynamics and discuss the consequences of agricultural intensification to landscape structure covering from the aspects of landscape ecology. Measurements of LULC are derived directly from pre-processed aerial images by a variety of analytical procedures, including statistical methods and image interpretation. The methodological challenges are confronted in the process of landscape classification and combining change detection approaches with landscape indices. Particular importance is paid on detecting agricultural landscape features at a small scale, demanding comprehensive understanding of such agroecosystems. Topological properties of the classified arable land and valley are determined in order to provide insight and emphasize the aspect the field edges in the agricultural landscape as important habitat. Change detection dynamics are presented with change matrix and additional calculations of gain, loss, swap, net change, change rate and tendencies are made. Transition’s possibility is computed following Markov’s probability model and presented with matrix, as well. Thesis’s spatial aspect is revealed with illustrative maps providing knowledge of location of the classified landscape categories and location of the dynamics of the changes occurred. It was assured that in Rekijoki valley’s landscape, remarkable changes in landscape has occurred. Landscape diversity has been strongly influenced by modern agricultural landscape change, as NP of open ditches has decreased and the MPS of the arable plot has decreased. Overall change in the diversity of the landscape is determined with the decrease of SHDI. Valley landscape considered as traditional land use area has experienced major transitional changes, as meadows class has lost almost one third of the area due to afforestation. Also, remarkable transitions have occurred from forest to meadow and arable land to built area. Boundaries measurement between modern and traditional landscape has indicated noticeable proportional increase in arable land-forest edge type and decrease in arable land-meadow edge type. Probability calculations predict higher future changes for traditional landscape, but also for arable land turning into built area.
Resumo:
Recent severe flooding in the UK has highlighted the need for better information on flood risk, increasing the pressure on engineers to enhance the capabilities of computer models for flood prediction. This paper evaluates the benefits to be gained from the use of remotely sensed data to support flood modelling. The remotely sensed data available can be used either to produce high-resolution digital terrain models (DTMs) (light detection and ranging (Lidar) data), or to generate accurate inundation mapping of past flood events (airborne synthetic aperture radar (SAR) data and aerial photography). The paper reports on the modelling of real flood events that occurred at two UK sites on the rivers Severn and Ouse. At these sites a combination of remotely sensed data and recorded hydrographs was available. It is concluded first that light detection and ranging Lidar generated DTMs support the generation of considerably better models and enhance the visualisation of model results and second that flood outlines obtained from airborne SAR or aerial images help develop an appreciation of the hydraulic behaviour of important model components, and facilitate model validation. The need for further research is highlighted by a number of limitations, namely: the difficulties in obtaining an adequate representation of hydraulically important features such as embankment crests and walls; uncertainties in the validation data; and difficulties in extracting flood outlines from airborne SAR images in urban areas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)