802 resultados para Adaptive Radiation Therapy, Neural Network, Clustering, Support Vector Machines, Predictive Analysis, Radioterapia Oncologica


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro è parte integrante di un progetto di ricerca del Ministero della Salute ed è stato sviluppato presso la Fisica Sanitaria ed il reparto di Radioterapia Oncologica dell’Azienda Ospedaliero Universitaria di Modena. L’obiettivo è la realizzazione di modelli predittivi e di reti neurali per tecniche di warping in ambito clinico. Modifiche volumetrico-spaziali di organi a rischio e target tumorali, durante trattamenti tomoterapici, possono alterare la distribuzione di dose rispetto ai constraints delineati in fase di pianificazione. Metodologie radioterapiche per la valutazione di organ motion e algoritmi di registrazione ibrida permettono di generare automaticamente ROI deformate e quantificare la divergenza dal piano di trattamento iniziale. Lo studio si focalizzata sulle tecniche di Adaptive Radiation Therapy (ART) mediante la meta-analisi di 51 pazienti sottoposti a trattamento mediante Tomotherapy. Studiando il comportamento statistico del campione, sono state generate analisi predittive per quantificare in tempo reale divergenze anatomico dosimetriche dei pazienti rispetto al piano originale e prevedere la loro ripianificazione terapeutica. I modelli sono stati implementati in MATLAB, mediante Cluster Analysis e Support Vector Machines; l’analisi del dataset ha evidenziato il valore aggiunto apportabile dagli algoritmi di deformazione e dalle tecniche di ART. La specificità e sensibilità della metodica è stata validata mediante l’utilizzo di analisi ROC. Gli sviluppi del presente lavoro hanno aperto una prospettiva di ricerca e utilizzo in trattamenti multicentrici e per la valutazione di efficacia ed efficienza delle nuove tecnologie in ambito RT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of mobile robots turns out to be interesting in activities where the action of human specialist is difficult or dangerous. Mobile robots are often used for the exploration in areas of difficult access, such as rescue operations and space missions, to avoid human experts exposition to risky situations. Mobile robots are also used in agriculture for planting tasks as well as for keeping the application of pesticides within minimal amounts to mitigate environmental pollution. In this paper we present the development of a system to control the navigation of an autonomous mobile robot through tracks in plantations. Track images are used to control robot direction by pre-processing them to extract image features. Such features are then submitted to a support vector machine and an artificial neural network in order to find out the most appropriate route. A comparison of the two approaches was performed to ascertain the one presenting the best outcome. The overall goal of the project to which this work is connected is to develop a real time robot control system to be embedded into a hardware platform. In this paper we report the software implementation of a support vector machine and of an artificial neural network, which so far presented respectively around 93% and 90% accuracy in predicting the appropriate route. (C) 2013 The Authors. Published by Elsevier B.V. Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a composite multi-layer classifier system for predicting the subcellular localization of proteins based on their amino acid sequence. The work is an extension of our previous predictor PProwler v1.1 which is itself built upon the series of predictors SignalP and TargetP. In this study we outline experiments conducted to improve the classifier design. The major improvement came from using Support Vector machines as a "smart gate" sorting the outputs of several different targeting peptide detection networks. Our final model (PProwler v1.2) gives MCC values of 0.873 for non-plant and 0.849 for plant proteins. The model improves upon the accuracy of our previous subcellular localization predictor (PProwler v1.1) by 2% for plant data (which represents 7.5% improvement upon TargetP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep Brain Stimulation has been used in the study of and for treating Parkinson’s Disease (PD) tremor symptoms since the 1980s. In the research reported here we have carried out a comparative analysis to classify tremor onset based on intraoperative microelectrode recordings of a PD patient’s brain Local Field Potential (LFP) signals. In particular, we compared the performance of a Support Vector Machine (SVM) with two well known artificial neural network classifiers, namely a Multiple Layer Perceptron (MLP) and a Radial Basis Function Network (RBN). The results show that in this study, using specifically PD data, the SVM provided an overall better classification rate achieving an accuracy of 81% recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Support Vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights and threshold such as to minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by $k$--means clustering and the weights are found using error backpropagation. We consider three machines, namely a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the US postal service database of handwritten digits, the SV machine achieves the highest test accuracy, followed by the hybrid approach. The SV approach is thus not only theoretically well--founded, but also superior in a practical application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente ricerca consiste nel validare ed automatizzare metodiche di Adaptive Radiation Therapy (ART), che hanno come obiettivo la personalizzazione continua del piano di trattamento radioterapico in base alle variazioni anatomiche e dosimetriche del paziente. Tali variazioni (casuali e/o sistematiche) sono identificabili mediante l’utilizzo dell’imaging diagnostico. Il lavoro svolto presso la struttura di Fisica Medica dell’Azienda Ospedaliera Universitaria del Policlinico di Modena, si inserisce in un progetto del Ministero della Salute del bando Giovani Ricercatori dal titolo: “Dose warping methods for IGRT and ADAPTIVERT: dose accumulation based on organ motion and anatomical variations of the patients during radiation therapy treatments”. Questa metodica si sta affermando sempre più come nuova opportunità di trattamento e, per tale motivo, nasce l’esigenza di studiare e automatizzare processi realizzabili nella pratica clinica, con un utilizzo limitato di risorse. Si sono sviluppati script che hanno permesso l’automazione delle operazioni di Adaptive e deformazioni, raccogliendo i dati di 51 pazienti sottoposti a terapia mediante Tomotherapy. L’analisi delle co-registrazioni deformabili delle strutture e delle dosi distribuite, ha evidenziato criticità del software che hanno reso necessario lo sviluppo di sistemi di controllo dei risultati, per facilitare l’utente nella revisione quotidiana dei casi clinici. La letteratura riporta un numero piuttosto limitato di esperienze sulla validazione e utilizzo su larga scala di questi tools, per tale motivo, si è condotto un esame approfondito della qualità degli algoritmi elastici e la valutazione clinica in collaborazione di fisici medici e medici radioterapisti. Sono inoltre stati sviluppati principi di strutturazione di reti Bayesiane, che consentono di predirre la qualità delle deformazioni in diversi ambiti clinici (H&N, Prostata, Polmoni) e coordinare il lavoro quotidiano dei professionisti, identificando i pazienti, per i quali sono apprezzabili variazioni morfo-dosimetriche significative. Da notare come tale attività venga sviluppata automaticamente durante le ore notturne, sfruttando l’automation come strumento avanzato e indipendente dall’operatore. Infine, il forte sviluppo, negli ultimi anni della biomeccanica applicata al movimento degli organi (dimostrato dalla numerosa letteratura al riguardo), ha avuto come effetto lo sviluppo, la valutazione e l’introduzione di algoritmi di deformazione efficaci. In questa direzione, nel presente lavoro, si sono analizzate quantitivamente le variazioni e gli spostamenti delle parotidi, rispetto all’inizio del trattamento, gettando le basi per una proficua linea di ricerca in ambito radioterapico.