971 resultados para Acridine orange


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleus with its limiting membrane and organelles was visible in the majority of the yeast cells stained vitally with the fluorochrome, acridine orange, at a dilution of 1 in 40,000. The intra-nuclear structures could be distinguished by their differential fluorescence. The chromocenters were green while the nucleolar equivalents were orange. The vacuole showed no fluorescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous non-invasive visualization of blood vessels and nerves in patients can be obtained in the eye. The retinal vasculature is a target of many retinopathies. Inflammation, readily manifest by leukocyte adhesion to the endothelial lining, is a key pathophysiological mechanism of many retinopathies, making it a valuable and ubiquitous target for disease research. Leukocyte fluorography has been extensively used in the past twenty years; however, fluorescent markers, visualization techniques, and recording methods have differed between studies. The lack of detailed protocol papers regarding leukocyte fluorography, coupled with lack of uniformity between studies, has led to a paucity of standards for leukocyte transit (velocity, adherence, extravasation) in the retina. Here, we give a detailed description of a convenient method using acridine orange (AO) and a commercially available scanning laser ophthalmoscope (SLO, HRA-OCT Spectralis) to view leukocyte behavior in the mouse retina. Normal mice are compared to mice with acute and chronic inflammation. This method can be readily adopted in many research labs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell culture analyses of growth, morphology and apoptosis commonly require counting of different cell types stained with antibodies to discriminate between them. Previously, we reported the use of l-Leucine methyl ester (l-LME) to prepare purified cultures of type 1 astrocytes with minimal microglia, and staining by GFAP and CD antibodies, respectively. Here, we demonstrate a novel use of acridine orange (AO) for rapid discrimination between these cell types using fluorescence microscopy. AO accumulates in the lysosomes and also binds strongly to nuclear DNA and cytoplasmic/nucleolar RNA. Microglia may contain abundant lysosomes due to known roles in homeostasis and immune response. AO staining of lysosomes was tested at a range of concentrations, and 2.5 μg/mL was most suitable. In agreement with previous reports, microglia treated with AO showed very intense yellow, orange or red granular cytoplasmic staining of lysosomes. Microglia contain a substantially higher number of lysosomes than astrocytes, which have a variable amount. We measured the microglia population at 5.14 ± 0.50% in mixed cultures. Thus, these results show AO is a novel discriminatory marker, as microglia were easily observed and counted in clumps on top of the monolayer of astrocytes, providing a rapid alternative to time-consuming and costly antibody-based assays.