930 resultados para Acoustic emission,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgeons may use a number of cutting instruments such as osteotomes and chisels to cut bone during an operative procedure. The initial loading of cortical bone during the cutting process results in the formation of microcracks in the vicinity of the cutting zone with main crack propagation to failure occuring with continued loading. When a material cracks, energy is emitted in the form of Acoustic Emission (AE) signals that spread in all directions, therefore, AE transducers can be used to monitor the occurrence and development of microcracking and crack propagation in cortical bone. In this research, number of AE signals (hits) and related parameters including amplitude, duration and absolute energy (abs-energy) were recorded during the indentation cutting process by a wedge blade on cortical bone specimens. The cutting force was also measured to correlate between load-displacement curves and the output from the AE sensor. The results from experiments show AE signals increase substantially during the loading just prior to fracture between 90% and 100% of maximum fracture load. Furthermore, an amplitude threshold value of 64dB (with approximate abs-energy of 1500 aJ) was established to saparate AE signals associated with microcracking (41 – 64dB) from fracture related signals (65 – 98dB). The results also demonstrated that the complete fracture event which had the highest duration value can be distinguished from other growing macrocracks which did not lead to catastrophic fracture. It was observed that the main crack initiation may be detected by capturing a high amplitude signal at a mean load value of 87% of maximum load and unsteady crack propagation may occur just prior to final fracture event at a mean load value of 96% of maximum load. The author concludes that the AE method is useful in understanding the crack initiation and fracture during the indentation cutting process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic emission avalanche distributions are studied in different alloy systems that exhibit a phase transition from a bcc to a close-packed structure. After a small number of thermal cycles through the transition, the distributions become critically stable (exhibit power-law behavior) and can be characterized by an exponent alpha. The values of alpha can be classified into universality classes, which depend exclusively on the symmetry of the resulting close-packed structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaaliaikainen, ennakoiva kunnonvalvonta on erittäin tärkeä osa modernin tehtaan tai tuotantolinjan toimintaa. Diplomityön teettäjä haluaa edelleen kehittää akustiseen emissioon perustuvaa kunnonvalvonta järjestelmäänsä, jotta siitä olisi enemmän hyötyä asiakkaalle. Diplomityö sisältää johdannonakustiseen emissioon ja akustisiin emissio sensoreihin. Työn tavoitteena oli kehittää päätöksentekojärjestelmä, jota käytettäisiin työn teettäjän valmistamien sensoreiden antaman tiedon automatisoituun analysointiin. Työssä on vertailtu kolmea eri ohjelmistotoimittajaa ja heidän ohjelmiaan, ja tehty ehdotus hankittavasta ohjelmistosta. Lisäksi työssä on kehitetty ohjeita, joiden avulla ohjelmisto ohjelmoidaan tuottamaan reaaliaikaista tietoa ja huolto-ohjeita sen käyttäjille. Lisäksi työssä annetaan ehdotuksia kunnonvalvonta- ja päätöksentekojärjestelmän edelleen kehittämiseen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial, electrical power generation, and transportation systems, to name but a few, rely heavily on power electronics to control and convert electrical power. Each of these systems, when encountering an unexpected failure, can cause significant financial losses, or even an emergency. A condition monitoring system would help to alleviate these concerns, but for the time being, there is no generally accepted and widely adopted method for power electronics. Acoustic emission is used as a failure precursor in many applications, but it has not been studied in power electronics so far. In this doctoral dissertation, observations of acoustic emission in power semiconductor components are presented. The acoustic emissions are caused by the switching operation and failure of power transistors. Three types of acoustic emission are observed. Furthermore, aspects related to the measurement and detection of acoustic phenomena are discussed. These include sensor performance and mechanical construction of experimental setups. The results presented in this dissertation are the outset of a research program where it will be determined whether an acoustic-emission-based condition monitoring method can be developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. Many statistics have shown effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms of material removal and the interactions among scratches performed in ceramic materials were investigated using acoustic emission signals, and scanning electron microscopy, in scratching experiments. Several testing conditions were used to produce different types of removing mechanism on a glass as well as on a polycrystalline alumina sample composed by heterogeneous grain size. It is known that the material removing process on a polycrystalline ceramic involves intergranular microfracture and grain dislodgement, unlike the chipping produced by the extension of lateral cracks in non-granular materials, such as glass. Distinct settings for velocities, loads, and two types of diamond indenter were tested. The material removal was carried out by three different methods of scratching: single passes, repeated overlapping passes, and parallel scratches. As a general result, there was a clear relationship between the acoustic emission signals and the damage intensity occurred in the material removal. More specifically, there were differences in the acoustic emission signal levels in the scratches made on the alumina and on the glass owing to the material removal mechanisms associated with the structure of these materials. A gradual increase in the acoustic emission levels was observed when the number of repeated passes was increased as a result of the damage accumulation process followed by severe material removal. It was also noticed that the acoustic emission signals were capable of reflecting the interactions between two parallel scratches.