982 resultados para Acoustic emission
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
Bridges are an important part of society's infrastructure and reliable methods are necessary to monitor them and ensure their safety and efficiency. Bridges deteriorate with age and early detection of damage helps in prolonging the lives and prevent catastrophic failures. Most bridges still in used today were built decades ago and are now subjected to changes in load patterns, which can cause localized distress and if not corrected can result in bridge failure. In the past, monitoring of structures was usually done by means of visual inspection and tapping of the structures using a small hammer. Recent advancements of sensors and information technologies have resulted in new ways of monitoring the performance of structures. This paper briefly describes the current technologies used in bridge structures condition monitoring with its prime focus in the application of acoustic emission (AE) technology in the monitoring of bridge structures and its challenges.
Identification of acoustic emission wave modes for accurate source location in plate-like structures
Resumo:
Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.
Resumo:
Acoustic emission (AE) technique is one of the popular diagnostic techniques used for structural health monitoring of mechanical, aerospace and civil structures. But several challenges still exist in successful application of AE technique. This paper explores various tools for analysis of recorded AE data to address two primary challenges: discriminating spurious signals from genuine signals and devising ways to quantify damage levels.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.
Resumo:
This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.
Resumo:
Bridges are an important part of a nation’s infrastructure and reliable monitoring methods are necessary to ensure their safety and efficiency. Most bridges in use today were built decades ago and are now subjected to changes in load patterns that can cause localized distress, which can result in bridge failure if not corrected. Early detection of damage helps in prolonging lives of bridges and preventing catastrophic failures. This paper briefly reviews the various technologies currently used in health monitoring of bridge structures and in particular discusses the application and challenges of acoustic emission (AE) technology. Some of the results from laboratory experiments on a bridge model are also presented. The main objectives of these experiments are source localisation and assessment. The findings of the study can be expected to enhance the knowledge of acoustic emission process and thereby aid in the development of an effective bridge structure diagnostics system.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. AE is one of the several non-destructive testing (NDT) techniques currently used for structural health monitoring (SHM) of civil, mechanical and aerospace structures. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. Despite these advantages, several challenges still exist in successful application of AE monitoring. Accurate localization of AE sources, discrimination between genuine AE sources and spurious noise sources and damage quantification for severity assessment are some of the important issues in AE testing and will be discussed in this paper. Various data analysis and processing approaches will be applied to manage those issues.
Resumo:
Condition monitoring of diesel engines can prevent unpredicted engine failures and the associated consequence. This paper presents an experimental study of the signal characteristics of a 4-cylinder diesel engine under various loading conditions. Acoustic emission, vibration and in-cylinder pressure signals were employed to study the effectiveness of these techniques for condition monitoring and identifying symptoms of incipient failures. An event driven synchronous averaging technique was employed to average the quasi-periodic diesel engine signal in the time domain to eliminate or minimize the effect of engine speed and amplitude variations on the analysis of condition monitoring signal. It was shown that acoustic emission (AE) is a better technique than vibration method for condition monitor of diesel engines due to its ability to produce high quality signals (i.e., excellent signal to noise ratio) in a noisy diesel engine environment. It was found that the peak amplitude of AE RMS signals correlating to the impact-like combustion related events decreases in general due to a more stable mechanical process of the engine as the loading increases. A small shift in the exhaust valve closing time was observed as the engine load increases which indicates a prolong combustion process in the cylinder (to produce more power). On the contrary, peak amplitudes of the AE RMS attributing to fuel injection increase as the loading increases. This can be explained by the increase fuel friction caused by the increase volume flow rate during the injection. Multiple AE pulses during the combustion process were identified in the study, which were generated by the piston rocking motion and the interaction between the piston and the cylinder wall. The piston rocking motion is caused by the non-uniform pressure distribution acting on the piston head as a result of the non-linear combustion process of the engine. The rocking motion ceased when the pressure in the cylinder chamber stabilized.
Resumo:
Diesel engine fuel injector faults can lead to reduced power, increased fuel consumption and greater exhaust emission levels and if left unchecked, can eventually lead to premature engine failure. This paper provides an overview of the Diesel, or compression ignition combustion process, and of the two basic fuel injector nozzle designs used in Diesel engines, namely, the pintle-type and hole-type nozzles. Also described are some common faults associated with these two types of fuel injector nozzles and the techniques previously used to experimentally simulate these faults. This paper also presents a recent experimental campaign undertaken using two different diesel engines whereby various fuel injector nozzle faults were induced into the engines. The first series of tests was undertaken using a turbo-charged 5.9 litre; Cummins Diesel engine whist the second series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine. Data corresponding to different injector fault conditions was captured using in-cylinder pressure, and acoustic emission transducers along with both crank-angle encoder and top-dead centre reference signals. Using averaged in-cylinder pressure signals, it was possible to qualify the severity of the faults whilst averaged acoustic emission signals were in turn, used as the basis for wavelets decomposition. Initial observations from this signal decomposition are also presented and discussed.
Resumo:
Acoustic emission has been found effective in offering earlier fault detection and improving identification capabilities of faults. However, the sensors are inherently uncalibrated. This paper presents a source to sensor paths calibration technique which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time domain, time-frequency domain, and the root mean square (RMS) energy. The results reveal how the RMS energy of a source propagates to the adjacent sensors. The findings lead to allocate the source and estimate its inferences to the adjacent sensor, and finally help to diagnose the small size diesel engines by minimising the crosstalk from multiple cylinders.