892 resultados para Acoustic Emission, Source Separation, Condition Monitoring, Diesel Engines, Injector Faults


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exhaust emissions from diesel engines are a substantial source of air pollution in this country. In recognition of this fact, the Environmental Protection Agency has issued strict new regulations due to take effect -in 1991 and 1994 that will drastically reduce the amount of some pollutants these engines will be allowed to emit. The technology is not currently available to produce diesel engines that can meet these regulations without large penalties in engine performance and efficiency. One technique that offers promise of being able to reduce emissions from both existing engines and new engines is alcohol fumigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaaliaikainen, ennakoiva kunnonvalvonta on erittäin tärkeä osa modernin tehtaan tai tuotantolinjan toimintaa. Diplomityön teettäjä haluaa edelleen kehittää akustiseen emissioon perustuvaa kunnonvalvonta järjestelmäänsä, jotta siitä olisi enemmän hyötyä asiakkaalle. Diplomityö sisältää johdannonakustiseen emissioon ja akustisiin emissio sensoreihin. Työn tavoitteena oli kehittää päätöksentekojärjestelmä, jota käytettäisiin työn teettäjän valmistamien sensoreiden antaman tiedon automatisoituun analysointiin. Työssä on vertailtu kolmea eri ohjelmistotoimittajaa ja heidän ohjelmiaan, ja tehty ehdotus hankittavasta ohjelmistosta. Lisäksi työssä on kehitetty ohjeita, joiden avulla ohjelmisto ohjelmoidaan tuottamaan reaaliaikaista tietoa ja huolto-ohjeita sen käyttäjille. Lisäksi työssä annetaan ehdotuksia kunnonvalvonta- ja päätöksentekojärjestelmän edelleen kehittämiseen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial, electrical power generation, and transportation systems, to name but a few, rely heavily on power electronics to control and convert electrical power. Each of these systems, when encountering an unexpected failure, can cause significant financial losses, or even an emergency. A condition monitoring system would help to alleviate these concerns, but for the time being, there is no generally accepted and widely adopted method for power electronics. Acoustic emission is used as a failure precursor in many applications, but it has not been studied in power electronics so far. In this doctoral dissertation, observations of acoustic emission in power semiconductor components are presented. The acoustic emissions are caused by the switching operation and failure of power transistors. Three types of acoustic emission are observed. Furthermore, aspects related to the measurement and detection of acoustic phenomena are discussed. These include sensor performance and mechanical construction of experimental setups. The results presented in this dissertation are the outset of a research program where it will be determined whether an acoustic-emission-based condition monitoring method can be developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. Many statistics have shown effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS. Copyright © 2006 by ABCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axle bearing damage with possible catastrophic failures can cause severe disruptions or even dangerous derailments, potentially causing loss of human life and leading to significant costs for railway infrastructure managers and rolling stock operators. Consequently the axle bearing damage process has safety and economic implications on the exploitation of railways systems. Therefore it has been the object of intense attention by railway authorities as proved by the selection of this topic by the European Commission in calls for research proposals. The MAXBE Project (http://www.maxbeproject.eu/), an EU-funded project, appears in this context and its main goal is to develop and to demonstrate innovative and efficient technologies which can be used for the onboard and wayside condition monitoring of axle bearings. The MAXBE (interoperable monitoring, diagnosis and maintenance strategies for axle bearings) project focuses on detecting axle bearing failure modes at an early stage by combining new and existing monitoring techniques and on characterizing the axle bearing degradation process. The consortium for the MAXBE project comprises 18 partners from 8 member states, representing operators, railway administrations, axle bearing manufactures, key players in the railway community and experts in the field of monitoring, maintenance and rolling stock. The University of Porto is coordinating this research project that kicked-off in November 2012 and it is completed on October 2015. Both on-board and wayside systems are explored in the project since there is a need for defining the requirement for the onboard equipment and the range of working temperatures of the axle bearing for the wayside systems. The developed monitoring systems consider strain gauges, high frequency accelerometers, temperature sensors and acoustic emission. To get a robust technology to support the decision making of the responsible stakeholders synchronized measurements from onboard and wayside monitoring systems are integrated into a platform. Also extensive laboratory tests were performed to correlate the in situ measurements to the status of the axle bearing life. With the MAXBE project concept it will be possible: to contribute to detect at an early stage axle bearing failures; to create conditions for the operational and technical integration of axle bearing monitoring and maintenance in different European railway networks; to contribute to the standardization of the requirements for the axle bearing monitoring, diagnosis and maintenance. Demonstration of the developed condition monitoring systems was performed in Portugal in the Northern Railway Line with freight and passenger traffic with a maximum speed of 220 km/h, in Belgium in a tram line and in the UK. Still within the project, a tool for optimal maintenance scheduling and a smart diagnostic tool were developed. This paper presents a synthesis of the most relevant results attained in the project. The successful of the project and the developed solutions have positive impact on the reliability, availability, maintainability and safety of rolling stock and infrastructure with main focus on the axle bearing health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acoustic emission (AE) technique is used for investigating the interfacial fracture and damage propagation in GFRP-and SRG-strengthened bricks during debonding tests. The bond behavior is investigated through single-lap shear bond tests and the fracture progress during the tests is recorded by means of AE sensors. The fracture progress and active debonding mechanisms are characterized in both specimen types with the aim of AE outputs. Moreover, a clear distinction between the AE outputs of specimens with different failure modes, in both SRG-and GFRP-strengthened specimens, is found which allows characterizing the debonding failure mode based on acoustic emission data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coal slurry was of vital interest during the last century due to its potential as an alternative fuel where liquid fuels were necessary. Recently, environmental impacts of the traditional fuels, similarities of bio-coal to that of coal, and huge bio-coal supply has attracted the attention to prepare bio-coal slurries as a new fuel. Rudolf Diesel who invented the diesel engine on 1895 was of the opinion that diesel engines are capable to use different kinds of fuels due to the special design. He tried some kind of vegetable oil to operate on his IC engine. Recently, due to high energy density and more environmentally friendly fuel, researchers believe that bio-coal slurries could act as a new alternative fuel in large diesel engines. Loads of research on different kinds of bio-coal slurry were done by the other researchers worldwide and a lot of progress to boost slurry’s quality were achieved recently. The present study aims to achieve the ideal condition of different factors affecting on the quality of bio-coal slurry. One charcoal sample and two kinds of torrefied wood were used to investigate and compare the reaction of various factors. The results show a great gap between the quality of slurries made of different samples and more researches are necessary to fully understand the impact of the different parameter and improving the quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work uses a monitoring system based on a PC platform, where the acoustic emission and electric power signals generated during the grinding process are used to investigate superficial burning occurrence in a surface grinding operation using two types of steel, three grinding conditions and an Al203 vitrified grinding wheel. Acoustic emission signals on the workpiece and grinding power were measured during a surface plunge operation until the grinding burn happened. From the results the standard deviation of the acoustic emission signal and the maximum electric power were calculated for each grinding pass. The proposed DPO parameter is the product between the power level and acoustic emission standard deviation. The results show that both signals can be used for burning detection, and the parameter DPO is the best indicator for the burning studied in this work. This can be explained by the high dispersion of the acoustic emission RMS level associated to the high power consumption when the grinding wheel lose its sharpness.