973 resultados para Acid degradation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acid degradation of 3D zinc phosphates primarily yields a one-dimensional ladder compound, an observation that is significant considering that the latter forms 3D structures on heating in water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clavulanic acid (CA), a potent beta-lactamase inhibitor, is very sensitive to pH and temperature. It is produced by Streptomyces clavuligerus and to optimize both the fermentation step and the downstream process, the expression of the hydrolysis kinetics has to be determined. In the present work the CA degradation rate from various sources was investigated at temperatures of 10, 20, 25, 30 and 40degreesC and PH values of 6.2 and 7.0. The results showed that first-order kinetics explained very well the hydrolysis kinetics and the Arrhenius equation could be applied to establish a relationship between the degradation rate constant and temperature, at both pHs. It has been observed that CA from fermentation medium was much more unstable than that from standard solution and from a commercially available medicine. Also, it was observed that CA was more stable at PH 6.2 than at pH 7.0, irrespective of the CA source. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study presents 100% degradation of H-acid under optimized conditions using Alcaligenes latus, isolated from textile industrial effluent. Gene/s responsible for H-acid degradation was/were found to be present on plasmid DNA. Addition of bipyridyl to incubated medium resulted in accumulation of terminal aromatic compound, suggesting that catechol may be terminal aromatic compound in degradation pathway of H-acid by A. latus. SDS-PAGE of cell free extracts showed two prominent bands close to molecular weight of catechol 1,2-dioxygenase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Syntheses of the isomers of the C11 acid, 1(a),3(a)- dimethylcyclohexane-1 (e),2(e),3(e)-tricarboxylic acid (A) and 1(a),3(e)-dimethylcyclohexane-1(e),2(e),3(a)-tricarboxylic acid (B), the latter by two different routes, are reported. Two of the four possible isomers of the precursor triester, trimethyl 1-methylcyclohexane-1,2,3-tricarboxylate, on individual methylation followed by hydrolysis, gave the trans,meso-acid (A), identified by comparison with an authentic sample, and the cis,trans-form (B) whose structure and configuration were proved by comparison with a specimen obtained by the unambiguous and highly stereoselective second synthesis. This demonstrated that methylation of the triester isomers occurs stereospecifically and exclusively at C-3. In the second sequence, it has been possible to assign definite conformations to four key intermediates and the final product, directly from n.m.r. spectra, from changes in these spectra accompanying specific steps, and from chemical evidence. Comparison of the n.m.r. spectra of the isomeric triesters (A) and (B) has provided unequivocal proof of the accepted trans,meso configuration for the abietic acid degradation product (A).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Organic acids are important constituents of fruit juices. They render tartness, flavour and specific taste to fruit juices. Shelf life and stability of fruit juices are important factors, which determine their nutritional quality and freshness. In this view, the effect of storage on the concentration of organic acids in commercially packed fruit juices is studied by reverse phase high performance liquid chromatography (RP-HPLC). Ten packed fruit juices from two different brands are stored at 30 C for 24, 48 and 72 hours. A reverse phase high performance liquid chromatographic method is used to determine the concentration of oxalic, tartaric, malic, ascorbic and citric acid in the fruit juices during storage. The chromatographic analysis of organic acids is carried out using mobile phase 0.5% (w/v) ammonium dihydrogen orthophosphate buffer (pH 2.8) on C18 column with UV-Vis detector. The results show that the concentration of organic acids generally decreases in juices under study with the increase in storage time. All the fruit juices belonging to tropicana brand underwent less organic acid degradation in comparison to juices of real brand. Orange fruit juice is found to be least stable among the juices under study, after the span of 72 hours. Amongst all the organic acids under investigation minimum stability is shown by ascorbic acid followed by malic and citric acid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Nicardipine is a member of a family of calcium channel blockers named dihydropiridines that are known to be photolabile and may cause phototoxicity. It is therefore vital to develop analytical method which can study the photodegradation of nicardipine. Method: Forced acid degradation of nicardipine was conducted by heating 12 ml of 1 mg/ml nicardipine with 3 ml of 2.5 M HCl for two hours. A gradient HPLC medthod was developed using Agilent Technologies 1200 series quaternary system. Separation was achieved with a Hichrome (250 x 4.6 mm) 5 μm C18 reversed phase column and mobile phase composition of 70% A(100%v/v water) and 30% B(99%v/v acetonitrile + 1%v/v formic acid) at time zero, composition of A and B was then charged to 60%v/v A;40%v/v B at 10minutes, 50%v/v A; 50%v/v B at 30minutes and 70%v/v A; 30%v/v B at 35minutes. 20μl of 0.8mg/ml of nicardipine degradation was injected at room temperature (25oC). The gradient method was transferred onto a HPLC-ESI-MS system (HP 1050 series - AQUAMAX mass detector) and analysis conducted with an acid degradation concentration of 0.25mg/ml and 20μl injection volume. ESI spectra were acquired in positive ionisation mode with MRM 0-600 m/z. Results: Eleven nicardipine degradation products were detected in the HPLC analysis and the resolution (RS) between the respective degradants where 1.0, 1.2, 6.0, 0.4, 1.7, 3.7, 1.8, 1.0, and 1.7 respectively. Nine degradation products were identified in the ESI spectra with the respective m/z ratio; 171.0, 166.1, 441.2, 423.2, 455.2, 455.2, 331.1, 273.1, and 290.1. The possible molecular formulae for each degradants were ambiguously determined. Conclusion: A sensitive and specific method was developed for the analysis of nicardipine degradants. Method enables detection and quantification of nicardipine degradation products that can be used for the study of the kinetics of nicardipine degradation processes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Degradation kinetics of food constituents may be related to the matrix molecular mobility by glass transition temperature. Our objective was to test this approach to describe ascorbic acid degradation during drying of persimmons in an automatically controlled tray dryer with temperatures (40 to 70 degrees C) and air velocities (0.8 to 2.0 m/s) varying according a second order central composite design. The Williams-Landel-Ferry model was satisfactorily adjusted to degradation curves for both control strategies adopted-constant air temperature and temperature fixed inside the fruit. Degradation rates were higher at higher drying temperatures, independent of the necessary time to attain the desired moisture content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this phase II study was to investigate the efficacy and tolerability of liarozole, a novel benzimidazole derivative, in non-small cell lung cancer (NSCLC). Liarozole 300 mg twice daily orally was evaluated in 14 patients with stage IIIB and IV NSCLC. 8 patients had received prior treatment with chemotherapy and/or radiotheraphy. WHO toxocity grading and response criteria were used. Liarozole was well tolerated. Grade 2 toxicities included alopecia (1 patient), dermatological toxicity (5 patients), dry mouth (2 patients) and nausea and vomiting (2 patients). Leukocytosis was seen in 5 patients, including 2 cases with an elevated white cell count pretreatment. Liarozole was discontinued in 1 patient who developed intolerable progressive pruritis associated with an erythematous rash. No objective tumour response was seen, all 14 patients developing progressive disease with 4 months of commencing treatment. Liarozole was well tolerated but was ineffective as single as single agent therapy in the management of NSCLC. The side-effect profile was compatible with inhibition of retinoic acid degradation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thiolases are important in fatty-acid degradation and biosynthetic pathways. Analysis of the genomic sequence of Mycobacterium smegmatis suggests the presence of several putative thiolase genes. One of these genes appears to code for an SCP-x protein. Human SCP-x consists of an N-terminal domain (referred to as SCP2 thiolase) and a C-terminal domain (referred as sterol carrier protein 2). Here, the cloning, expression, purification and crystallization of this putative SCP-x protein from M. smegmatis are reported. The crystals diffracted X-rays to 2.5 angstrom resolution and belonged to the triclinic space group P1. Calculation of rotation functions using X-ray diffraction data suggests that the protein is likely to possess a hexameric oligomerization with 32 symmetry which has not been observed in the other six known classes of this enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

麻疯树(Jatropha curcas L.)属大戟科麻疯树属多年生亚乔木,耐干旱、高温和贫瘠等,具很强的抗逆性,在干热河谷等边际土地上生长良好。其种子富含油脂,是制备生物柴油的理想材料,为重要的能源植物之一。油体(oil body)是种子细胞中重要的细胞器, 脂肪酸以三脂酰甘油(triacylglyeerols,TAG)的形式储存其内,是种子萌发和幼苗生长时所需碳骨架和能量的主要来源。种子萌发为生命萌动并构建成自养个体的过程,是高等植物生长发育中的重要事件。 本论文运用高通量的蛋白质组学研究手段,结合电镜技术和生理学分析,对麻疯树种子油体以及种子萌发过程中蛋白质表达、生理学响应和细胞结构变化进行了研究。 从麻疯树种子胚乳中分离油体,再从油体中提取蛋白,经双向凝胶电泳后,得到油体蛋白质组的二维表达谱,这些蛋白质主要分布在等电点5 ~ 10、分子量12 ~ 66 kDa的范围内;图像分析表明,油体蛋白质组至少有141个蛋白点,其中酸性蛋白74个,碱性蛋白67个,表达丰度较高的多为低分子量碱性蛋白。对其中36个重要蛋白点进行LC-MS/MS质谱分析,得到鉴定的蛋白分别为30个基因的表达产物,主要包括油体重要的结构蛋白油质蛋白(oleosin)和caleosin,麻疯树种子毒蛋白curcin,以及新鉴定得到的另一种可能的麻疯树种子毒蛋白,人体过敏反应蛋白橡胶延伸因子(REF)。还有四个与脂肪酸代谢相关的酶,其中3-羟酰-酰基载体蛋白(ACP)脱水/催化酶和醇酰基转移酶与脂肪酸合成有关,而脂氧合酶和磷脂酶D在脂肪酸降解中发挥作用,显示部分脂肪酸代谢相关的酶在油体储存状态就已附着在油体上,为种子萌发时动员油脂做好了准备。 麻疯树种子胚乳发达,在32℃湿润土壤中很快就会萌动,胚轴伸长露出胚根,长出新根,约4天后形成出土子叶幼苗。种子萌发过程中胚乳主要成分含量测定表明,含水量在前24小时迅速上升,至48小时增加缓慢,此后开始较快上升,可分为三个阶段,呈现“S”型的变化;粗脂肪和粗蛋白在前两个阶段变化不大,进入第三阶段后其含量迅速下降,前者先于后者,分别在萌发后72小时和96小时后开始明显减少,说明被大量降解、转化,供萌发生长利用,其中主要组分亚油酸最为明显。细胞超微结构观察发现,排列整齐充满整个胚乳细胞的油体和嵌合在油体中的蛋白储存泡在种子萌发过程中,随着线粒体、乙醛酸循环体和液泡的出现增多或增大而被逐渐解体、减少或消失;同时,发现脂肪酸主要在乙醛酸循环体、蛋白颗粒主要在液泡中被降解或转化。 蛋白质组学分析表明,麻疯树种子在萌发72小时过程中变化量在两倍以上的差异蛋白点共有141个,所有的差异蛋白均通过LC-MS/MS分析和NCBI蛋白数据库搜索得到鉴定。其中包括多个参与降解储藏油脂的酶,如乙醛酸循环途径中的顺乌头酸酶,异柠檬酸裂解酶和苹果酸脱氢酶等,均从种子萌发48小时开始表达量明显上升;葡糖异生途径中的酶在种子萌发中的积累略晚于乙醛酸循环途径,如烯醇酶,磷酸甘油酸变位酶,磷酸甘油酸激酶,磷酸丙糖异构酶和醛缩酶大多在萌发约60小时后表达量开始上调。分析结果表明,乙醛酸循环途径在种子萌发48小时后被激活,与电镜观察胚乳细胞发现油脂在萌发48小时时开始被动员相一致,因而大规模的油脂动员开始于种子萌发的第三阶段。 同时,蛋白质组学的分析结果也得到了种子胚乳组分变化分析及电镜观察结果的印证。超微细胞结构观察显示种子储藏蛋白降解在萌发第二阶段启动,主要在液泡中进行降解。粗脂肪的含量在72小时时显著降低,而电镜观察显示此时胚乳细胞中出现中央大液泡,出现大量的线粒体和乙醛酸循环体,细胞结构发生重大变化,萌发96小时后仅有少量油体残留于胚乳细胞中,这些都为储藏油脂在麻疯树种子萌发过程中的降解方式提供了重要证据。许多其他的功能蛋白在种子萌发过程中也发生了变化,表明种子萌发过程中不仅发生储藏物质的动员,也发生抗逆反应以及植物形态的构建等众多其他生理生化反应。 本研究首次对麻疯树种子油体进行了蛋白组成分析,并结合电镜技术及生理分析深入探讨了种子储藏物质在萌发中的降解方式,为更好的理解油体结构、木本油料种子的萌发机制和对麻疯树进行品种的改良提供了参考。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

单宁是一种典型的有毒难降解污染物,在制革、造纸、制药、印染等行业废水中广泛存在,对水环境造成污染并且影响废水生物处理效果。本研究针对含单宁废水生物处理效率低、较高浓度时微生物受抑制且污泥容易膨胀等问题,采用超声和磁粉来强化含单宁废水生物处理,研究超声和磁粉对微生物活性、污染物去除及污泥沉降性能的影响,并对其作用机理进行了分析和探讨。 研究结果表明,活性污泥系统中单宁酸容积负荷可以达到1.8kgCOD/(m3·d),单宁酸和COD去除率分别达到85.2%和79.6%,但如果负荷进一步增大则微生物活性迅速降低。系统在pH 5~8、温度20~35℃、DO>1 mg/L的条件下具有较好的单宁酸降解效果和处理稳定性。单宁降解动力学参数为:μmax =0.208h-1;Ks=226mg/L;Ki=522mg/L;kd=0.0092h-1;Y =0.594。 磁粉对系统处理效果和污泥沉降性能有一定的促进作用,且效果要优于外磁场。适宜的磁粉粒径和投加量分别为0.05~0.15mm和1.0g/L,COD去除率比对照系统提高6.4%,SVI降低28.6%,污泥絮体结构紧密。磁粉强化主要是通过其对污泥菌胶团的凝聚、吸附作用以及对微生物活性的强化作用实现。 在适当强度(0.4W/cm2)和辐照时间(20min)的超声作用下污泥絮体和细胞膜通透性增大,酶分泌也增多,系统的COD去除率比对照提高了8.8%,单宁酶酶活提高了11%。但超声也使污泥絮体结构松散,沉降性能下降,SVI比对照系统升高9.3%。 由于污泥流失加剧导致污泥浓度相对较低,声磁联合强化系统相对于磁粉强化系统其处理效果并没有提高。但相对于单纯活性污泥系统,声磁联合作用下系统处理效果、污泥沉降性能以及系统运行稳定性都得到明显改善。本研究为难降解废水的生物处理提供了一个新的思路。 Tannins are typical refractory and toxic pollutants that commonly exist in wastewater from dye, medicine, paper and leather industries and cause many problems associated with environmental pollution and biological treatment of wastewater. Biological treatment efficiency of tannin-containing wastewater is usually low owing to its biological toxicity and low biodegradability, microbes are usually inhibited under high tannin concentration and sludge bulking frequently occurs. In this study, ultrasound and magnetic powder were used to improve the biological treatment performance of simulated tannic acid-containing wastewater. The effects of ultrasonic irradiation and magnetic powder on microbial activity, tannic acid degradation rate and sludge sedimentation were investigated. The augmentation mechanisms were analyzed and discussed. The experimental results showed that the microbes were prominently inhibited under high tannic acid concentration, but moderate degradation efficiency can be maintained under a tannic acid load of up to 1.8kgCOD/(m3·d), with the tannic acid degradation and COD removal percentage of 85.2% and 79.6% respectively. The highest degradation rates and treatment stability were achieved at pH range of 5~8, temperature range of 20~35℃ and DO concentration of above 1mg/L. The kinetic parameters were estimated, including: μmax =0.208h-1;Ks=226mg/L;Ki=522mg/L;kd=0.0092h-1;Y =0.594. The microbial activity, tannic acid degradation rate and sludge sedimentation were improved by adding Fe3O4 magnetic powder, and the augmentation performance was better than external magnetic field. The appropriate particle size and dosage of magnetic powder were found to be 0.05~0.15mm and 1.0g/L, respectively, under which the COD removal percentage was improved by 6.4% and SVI value decreased by 28.6%, and compact floc structure was observed. This was mainly caused by the flocculation and adsorption effects of magnetic powder against sludge floc and the stimulation of microbial activity under appropriate magnetic field. Under appropriate ultrasonic irradiation (ultrasonic intensity 0.4W/cm2, ultrasonic irradiation time 20min), the permeability of floc and cell membrane are improved, transfer of substrate and oxygen were reinforced; meanwhile, more enzyme were produced by microbes under the slight damage caused by ultrasound. However, the floc structure became loose under ultrasonic irradiation, leading to relatively poor sedimentation, with the SVI value 9.3% higher than the control system. Although the magnetic powder-ultrasonic irradiation combined augmentation system showed no improvement in treatment performance compared with sole magnetic augmentation system owing to its relatively low sludge concentration, it guaranteed the stable operation of system, meanwhile the tannic acid degradation and sludge sedimentation were significantly improved compared with sole activated sludge system. This study gives a new idea for biological treatment of refractory wastewater.