983 resultados para ATOMIC CLOCKS
Resumo:
Mode of access: Internet.
Resumo:
Alkali vapours, such as rubidium, are being used extensively in several important fields of research such as slow and stored light nonlinear optics quantum computation, atomic clocks and magnetometers. Recently, there is a growing effort towards miniaturizing traditional centimetre-size vapour cells. Owing to the significant reduction in device dimensions, light-matter interactions are greatly enhanced, enabling new functionalities due to the low power threshold needed for nonlinear interactions. Here, taking advantage of the mature platform of silicon photonics, we construct an efficient and flexible platform for tailored light-vapour interactions on a chip. Specifically, we demonstrate light-matter interactions in an atomic cladding waveguide, consisting of a silicon nitride nano-waveguide core with a rubidium vapour cladding. We observe the efficient interaction of the electromagnetic guided mode with the rubidium cladding and show that due to the high confinement of the optical mode, the rubidium absorption saturates at powers in the nanowatt regime.
Resumo:
In this paper we describe an experiment on laser cooling of Rb-87 atoms directly from a vapor background in diffuse light. Diffuse light is produced in a ceramic integrating sphere by multiple scattering of two laser beams injected through multimode fibers. A probe beam, whose propagation direction is either horizontal or vertical, is used to detect cold atoms. We measured the absorption spectra of the cold atoms by scanning the frequency of the probe beam, and observed both the absorption signal and the time of flight signal after we switched off the cooling light, from which we estimated the temperature and the number of cold atoms. This method is clearly attractive for building a compact cold atom clock.
Resumo:
The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country,. It provides users with a direct link to the Brazilian Geodetic System - SGB. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic system, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 system in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project.
Resumo:
The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. It provides to users a direct link to the Brazilian Geodetic System. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic frame, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1 σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 frame in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning, will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. © Springer-Verlag Berlin Heidelberg 2009.
Resumo:
With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America
Resumo:
In the last two decades, experimental progress in controlling cold atoms and ions now allows us to manipulate fragile quantum systems with an unprecedented degree of precision. This has been made possible by the ability to isolate small ensembles of atoms and ions from noisy environments, creating truly closed quantum systems which decouple from dissipative channels. However in recent years, several proposals have considered the possibility of harnessing dissipation in open systems, not only to cool degenerate gases to currently unattainable temperatures, but also to engineer a variety of interesting many-body states. This thesis will describe progress made towards building a degenerate gas apparatus that will soon be capable of realizing these proposals. An ultracold gas of ytterbium atoms, trapped by a species-selective lattice will be immersed into a Bose-Einstein condensate (BEC) of rubidium atoms which will act as a bath. Here we describe the challenges encountered in making a degenerate mixture of rubidium and ytterbium atoms and present two experiments performed on the path to creating a controllable open quantum system. The first experiment will describe the measurement of a tune-out wavelength where the light shift of $\Rb{87}$ vanishes. This wavelength was used to create a species-selective trap for ytterbium atoms. Furthermore, the measurement of this wavelength allowed us to extract the dipole matrix element of the $5s \rightarrow 6p$ transition in $\Rb{87}$ with an extraordinary degree of precision. Our method to extract matrix elements has found use in atomic clocks where precise knowledge of transition strengths is necessary to account for minute blackbody radiation shifts. The second experiment will present the first realization of a degenerate Bose-Fermi mixture of rubidium and ytterbium atoms. Using a three-color optical dipole trap (ODT), we were able to create a highly-tunable, species-selective potential for rubidium and ytterbium atoms which allowed us to use $\Rb{87}$ to sympathetically cool $\Yb{171}$ to degeneracy with minimal loss. This mixture is the first milestone creating the lattice-bath system and will soon be used to implement novel cooling schemes and explore the rich physics of dissipation.
Resumo:
The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.
Resumo:
The effects of atomic oxygen (AO) and vacuum UV radiation simulating low Earth orbit conditions on two commercially available piezoelectric polymer films, poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE), have been studied. Surface erosion and pattern development are significant for both polymers. Erosion yields were determined as 2.8 � 10�24 cm3/atom for PVDF and 2.5 � 10�24 cm3/atom for P(VDF-TrFE). The piezoelectric properties of the residual material of both polymers were largely unchanged after exposure, although a slight shift in the Curie transition of the P(VDF-TrFE) was observed. A lightly cross-linked network was formed in the copolymer presumably because of penetrating vacuum ultraviolet (VUV) radiation, while the homopolymer remained uncross-linked. These differences were attributed to varying degrees of crystallinity and potentially greater absorption, and hence damage, of VUV radiation in P(VDFTrFE) compared with PVDF.
Resumo:
The effective atomic number is widely employed in radiation studies, particularly for the characterisation of interaction processes in dosimeters, biological tissues and substitute materials. Gel dosimeters are unique in that they comprise both the phantom and dosimeter material. In this work, effective atomic numbers for total and partial electron interaction processes have been calculated for the first time for a Fricke gel dosimeter, five hypoxic and nine normoxic polymer gel dosimeters. A range of biological materials are also presented for comparison. The spectrum of energies studied spans 10 keV to 100 MeV, over which the effective atomic number varies by 30 %. The effective atomic numbers of gels match those of soft tissue closely over the full energy range studied; greater disparities exist at higher energies but are typically within 4 %.