840 resultados para ARTIFICIAL NOISE
Resumo:
This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented.
Resumo:
Las redes de sensores inalámbricas son uno de los sectores con más crecimiento dentro de las redes inalámbricas. La rápida adopción de estas redes como solución para muchas nuevas aplicaciones ha llevado a un creciente tráfico en el espectro radioeléctrico. Debido a que las redes inalámbricas de sensores operan en las bandas libres Industrial, Scientific and Medical (ISM) se ha producido una saturación del espectro que en pocos años no permitirá un buen funcionamiento. Con el objetivo de solucionar este tipo de problemas ha aparecido el paradigma de Radio Cognitiva (CR). La introducción de las capacidades cognitivas en las redes inalámbricas de sensores permite utilizar estas redes para aplicaciones con unos requisitos más estrictos respecto a fiabilidad, cobertura o calidad de servicio. Estas redes que aúnan todas estas características son llamadas redes de sensores inalámbricas cognitivas (CWSNs). La mejora en prestaciones de las CWSNs permite su utilización en aplicaciones críticas donde antes no podían ser utilizadas como monitorización de estructuras, de servicios médicos, en entornos militares o de vigilancia. Sin embargo, estas aplicaciones también requieren de otras características que la radio cognitiva no nos ofrece directamente como, por ejemplo, la seguridad. La seguridad en CWSNs es un aspecto poco desarrollado al ser una característica no esencial para su funcionamiento, como pueden serlo el sensado del espectro o la colaboración. Sin embargo, su estudio y mejora es esencial de cara al crecimiento de las CWSNs. Por tanto, esta tesis tiene como objetivo implementar contramedidas usando las nuevas capacidades cognitivas, especialmente en la capa física, teniendo en cuenta las limitaciones con las que cuentan las WSNs. En el ciclo de trabajo de esta tesis se han desarrollado dos estrategias de seguridad contra ataques de especial importancia en redes cognitivas: el ataque de simulación de usuario primario (PUE) y el ataque contra la privacidad eavesdropping. Para mitigar el ataque PUE se ha desarrollado una contramedida basada en la detección de anomalías. Se han implementado dos algoritmos diferentes para detectar este ataque: el algoritmo de Cumulative Sum y el algoritmo de Data Clustering. Una vez comprobado su validez se han comparado entre sí y se han investigado los efectos que pueden afectar al funcionamiento de los mismos. Para combatir el ataque de eavesdropping se ha desarrollado una contramedida basada en la inyección de ruido artificial de manera que el atacante no distinga las señales con información del ruido sin verse afectada la comunicación que nos interesa. También se ha estudiado el impacto que tiene esta contramedida en los recursos de la red. Como resultado paralelo se ha desarrollado un marco de pruebas para CWSNs que consta de un simulador y de una red de nodos cognitivos reales. Estas herramientas han sido esenciales para la implementación y extracción de resultados de la tesis. ABSTRACT Wireless Sensor Networks (WSNs) are one of the fastest growing sectors in wireless networks. The fast introduction of these networks as a solution in many new applications has increased the traffic in the radio spectrum. Due to the operation of WSNs in the free industrial, scientific, and medical (ISM) bands, saturation has ocurred in these frequencies that will make the same operation methods impossible in the future. Cognitive radio (CR) has appeared as a solution for this problem. The networks that join all the mentioned features together are called cognitive wireless sensor networks (CWSNs). The adoption of cognitive features in WSNs allows the use of these networks in applications with higher reliability, coverage, or quality of service requirements. The improvement of the performance of CWSNs allows their use in critical applications where they could not be used before such as structural monitoring, medical care, military scenarios, or security monitoring systems. Nevertheless, these applications also need other features that cognitive radio does not add directly, such as security. The security in CWSNs has not yet been explored fully because it is not necessary field for the main performance of these networks. Instead, other fields like spectrum sensing or collaboration have been explored deeply. However, the study of security in CWSNs is essential for their growth. Therefore, the main objective of this thesis is to study the impact of some cognitive radio attacks in CWSNs and to implement countermeasures using new cognitive capabilities, especially in the physical layer and considering the limitations of WSNs. Inside the work cycle of this thesis, security strategies against two important kinds of attacks in cognitive networks have been developed. These attacks are the primary user emulator (PUE) attack and the eavesdropping attack. A countermeasure against the PUE attack based on anomaly detection has been developed. Two different algorithms have been implemented: the cumulative sum algorithm and the data clustering algorithm. After the verification of these solutions, they have been compared and the side effects that can disturb their performance have been analyzed. The developed approach against the eavesdropping attack is based on the generation of artificial noise to conceal information messages. The impact of this countermeasure on network resources has also been studied. As a parallel result, a new framework for CWSNs has been developed. This includes a simulator and a real network with cognitive nodes. This framework has been crucial for the implementation and extraction of the results presented in this thesis.
Resumo:
A simple but efficient voice activity detector based on the Hilbert transform and a dynamic threshold is presented to be used on the pre-processing of audio signals -- The algorithm to define the dynamic threshold is a modification of a convex combination found in literature -- This scheme allows the detection of prosodic and silence segments on a speech in presence of non-ideal conditions like a spectral overlapped noise -- The present work shows preliminary results over a database built with some political speech -- The tests were performed adding artificial noise to natural noises over the audio signals, and some algorithms are compared -- Results will be extrapolated to the field of adaptive filtering on monophonic signals and the analysis of speech pathologies on futures works
Resumo:
This document provides language that can be used by an Owner-Agency to develop materials and construction specifications with the objective of reducing tire/pavement noise. While the practices described herein are largely prescriptive, they have been demonstrated to increase the likelihood of constructing a durable, quieter concrete surface. Guidance is provided herein for texturing the concrete surface since texture geometry has a paramount effect on tire/pavement noise. Guidance for curing is also provided to improve strength and durability of the surface mortar, and thus to improve texture durability.
Resumo:
O ensaio de dureza, e mais concretamente o ensaio de micro dureza Vickers, é no universo dos ensaios mecânicos um dos mais utilizados quer seja na indústria, no ensino ou na investigação e desenvolvimento de produto no âmbito das ciências dos materiais. Na grande maioria dos casos, a utilização deste ensaio tem como principal aplicação a caracterização ou controlo da qualidade de fabrico de materiais metálicos. Sendo um ensaio de relativa simplicidade de execução, rapidez e com resultados comparáveis e relacionáveis a outras grandezas físicas das propriedades dos materiais. Contudo, e tratando-se de um método de ensaio cuja intervenção humana é importante, na medição da indentação gerada por penetração mecânica através de um sistema ótico, não deixa de exibir algumas debilidades que daí advêm, como sendo o treino dos técnicos e respetivas acuidades visuais, fenómenos de fadiga visual que afetam os resultados ao longo de um turno de trabalho; ora estes fenómenos afetam a repetibilidade e reprodutibilidade dos resultados obtidos no ensaio. O CINFU possui um micro durómetro Vickers, cuja realização dos ensaios depende de um técnico treinado para a execução do mesmo, apresentando todas as debilidades já mencionadas e que o tornou elegível para o estudo e aplicação de uma solução alternativa. Assim, esta dissertação apresenta o desenvolvimento de uma solução alternativa ao método ótico convencional na medição de micro dureza Vickers. Utilizando programação em LabVIEW da National Instruments, juntamente com as ferramentas de visão computacional (NI Vision), o programa começa por solicitar ao técnico a seleção da câmara para aquisição da imagem digital acoplada ao micro durómetro, seleção do método de ensaio (Força de ensaio); posteriormente o programa efetua o tratamento da imagem (aplicação de filtros para eliminação do ruído de fundo da imagem original), segue-se, por indicação do operador, a zona de interesse (ROI) e por sua vez são identificadas automaticamente os vértices da calote e respetivas distâncias das diagonais geradas concluindo, após aceitação das mesmas, com o respetivo cálculo de micro dureza resultante. Para validação dos resultados foram utilizados blocos-padrão de dureza certificada (CRM), cujos resultados foram satisfatórios, tendo-se obtido um elevado nível de exatidão nas medições efetuadas. Por fim, desenvolveu-se uma folha de cálculo em Excel com a determinação da incerteza associada às medições de micro dureza Vickers. Foram então comparados os resultados nas duas metodologias possíveis, pelo método ótico convencional e pela utilização das ferramentas de visão computacional, tendo-se obtido bons resultados com a solução proposta.
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.
Resumo:
The paper investigates the feasibility of implementing an intelligent classifier for noise sources in the ocean, with the help of artificial neural networks, using higher order spectral features. Non-linear interactions between the component frequencies of the noise data can give rise to certain phase relations called Quadratic Phase Coupling (QPC), which cannot be characterized by power spectral analysis. However, bispectral analysis, which is a higher order estimation technique, can reveal the presence of such phase couplings and provide a measure to quantify such couplings. A feed forward neural network has been trained and validated with higher order spectral features
Resumo:
Ensemble learning can be used to increase the overall classification accuracy of a classifier by generating multiple base classifiers and combining their classification results. A frequently used family of base classifiers for ensemble learning are decision trees. However, alternative approaches can potentially be used, such as the Prism family of algorithms that also induces classification rules. Compared with decision trees, Prism algorithms generate modular classification rules that cannot necessarily be represented in the form of a decision tree. Prism algorithms produce a similar classification accuracy compared with decision trees. However, in some cases, for example, if there is noise in the training and test data, Prism algorithms can outperform decision trees by achieving a higher classification accuracy. However, Prism still tends to overfit on noisy data; hence, ensemble learners have been adopted in this work to reduce the overfitting. This paper describes the development of an ensemble learner using a member of the Prism family as the base classifier to reduce the overfitting of Prism algorithms on noisy datasets. The developed ensemble classifier is compared with a stand-alone Prism classifier in terms of classification accuracy and resistance to noise.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the search for productivity increase, industry has invested on the development of intelligent, flexible and self-adjusting method, capable of controlling processes through the assistance of autonomous systems, independently whether they are hardware or software. Notwithstanding, simulating conventional computational techniques is rather challenging, regarding the complexity and non-linearity of the production systems. Compared to traditional models, the approach with Artificial Neural Networks (ANN) performs well as noise suppression and treatment of non-linear data. Therefore, the challenges in the wood industry justify the use of ANN as a tool for process improvement and, consequently, add value to the final product. Furthermore, Artificial Intelligence techniques such as Neuro-Fuzzy Networks (NFNs) have proven effective, since NFNs combine the ability to learn from previous examples and generalize the acquired information from the ANNs with the capacity of Fuzzy Logic to transform linguistic variables in rules.
Resumo:
Los peces son animales, donde en la mayoría de los casos, son considerados como nadadores muy eficientes y con una alta capacidad de maniobra. En general los peces se caracterizan por su capacidad de maniobra, locomoción silencioso, giros y partidas rápidas y viajes de larga distancia. Los estudios han identificado varios tipos de locomoción que los peces usan para generar maniobras y natación constante. A bajas velocidades la mayoría de los peces utilizan sus aletas pares y / o impares para su locomoción, que ofrecen una mayor maniobrabilidad y mejor eficiencia de propulsión. A altas velocidades la locomoción implica el cuerpo y / o aleta caudal porque esto puede lograr un mayor empuje y aceleración. Estas características pueden inspirar el diseo y fabricación de una piel muy flexible, una aleta caudal mórfica y una espina dorsal no articulada con una gran capacidad de maniobra. Esta tesis presenta el desarrollo de un novedoso pez robot bio-inspirado y biomimético llamado BR3, inspirado en la capacidad de maniobra y nado constante de los peces vertebrados. Inspirado por la morfología de los peces Micropterus salmoides o también conocido como lubina negra, el robot BR3 utiliza su fundamento biológico para desarrollar modelos y métodos matemáticos precisos que permiten imitar la locomoción de los peces reales. Los peces Largemouth Bass pueden lograr un nivel increíble de maniobrabilidad y eficacia de la propulsión mediante la combinación de los movimientos ondulatorios y aletas morficas. Para imitar la locomoción de los peces reales en una contraparte artificial se necesita del análisis de tecnologías de actuación alternativos, como arreglos de fibras musculares en lugar de servo actuadores o motores DC estándar, así como un material flexible que proporciona una estructura continua sin juntas. Las aleaciones con memoria de forma (SMAs) proveen la posibilidad de construir robots livianos, que no emiten ruido, sin motores, sin juntas y sin engranajes. Asi es como un pez robot submarino se ha desarrollado y cuyos movimientos son generados mediante SMAs. Estos actuadores son los adecuados para doblar la espina dorsal continua del pez robot, que a su vez provoca un cambio en la curvatura del cuerpo. Este tipo de arreglo estructural está inspirado en los músculos rojos del pescado, que son usados principalmente durante la natación constante para la flexión de una estructura flexible pero casi incompresible como lo es la espina dorsal de pescado. Del mismo modo la aleta caudal se basa en SMAs y se modifica para llevar a cabo el trabajo necesario. La estructura flexible proporciona empuje y permite que el BR3 nade. Por otro lado la aleta caudal mórfica proporciona movimientos de balanceo y guiada. Motivado por la versatilidad del BR3 para imitar todos los modos de natación (anguilliforme, carangiforme, subcarangiforme y tunniforme) se propone un controlador de doblado y velocidad. La ley de control de doblado y velocidad incorpora la información del ángulo de curvatura y de la frecuencia para producir el modo de natación deseado y a su vez controlar la velocidad de natación. Así mismo de acuerdo con el hecho biológico de la influencia de la forma de la aleta caudal en la maniobrabilidad durante la natación constante se propone un control de actitud. Esta novedoso robot pescado es el primero de su tipo en incorporar sólo SMAs para doblar una estructura flexible continua y sin juntas y engranajes para producir empuje e imitar todos los modos de natación, así como la aleta caudal que es capaz de cambiar su forma. Este novedoso diseo mecatrónico presenta un futuro muy prometedor para el diseo de vehículos submarinos capaces de modificar su forma y nadar mas eficientemente. La nueva metodología de control propuesto en esta tesis proporcionan una forma totalmente nueva de control de robots basados en SMAs, haciéndolos energéticamente más eficientes y la incorporación de una aleta caudal mórfica permite realizar maniobras más eficientemente. En su conjunto, el proyecto BR3 consta de cinco grandes etapas de desarrollo: • Estudio y análisis biológico del nado de los peces con el propósito de definir criterios de diseño y control. • Formulación de modelos matemáticos que describan la: i) cinemática del cuerpo, ii) dinámica, iii) hidrodinámica iv) análisis de los modos de vibración y v) actuación usando SMA. Estos modelos permiten estimar la influencia de modular la aleta caudal y el doblado del cuerpo en la producción de fuerzas de empuje y fuerzas de rotación necesarias en las maniobras y optimización del consumo de energía. • Diseño y fabricación de BR3: i) estructura esquelética de la columna vertebral y el cuerpo, ii) mecanismo de actuación basado en SMAs para el cuerpo y la aleta caudal, iii) piel artificial, iv) electrónica embebida y v) fusión sensorial. Está dirigido a desarrollar la plataforma de pez robot BR3 que permite probar los métodos propuestos. • Controlador de nado: compuesto por: i) control de las SMA (modulación de la forma de la aleta caudal y regulación de la actitud) y ii) control de nado continuo (modulación de la velocidad y doblado). Está dirigido a la formulación de los métodos de control adecuados que permiten la modulación adecuada de la aleta caudal y el cuerpo del BR3. • Experimentos: está dirigido a la cuantificación de los efectos de: i) la correcta modulación de la aleta caudal en la producción de rotación y su efecto hidrodinámico durante la maniobra, ii) doblado del cuerpo para la producción de empuje y iii) efecto de la flexibilidad de la piel en la habilidad para doblarse del BR3. También tiene como objetivo demostrar y validar la hipótesis de mejora en la eficiencia de la natación y las maniobras gracias a los nuevos métodos de control presentados en esta tesis. A lo largo del desarrollo de cada una de las cinco etapas, se irán presentando los retos, problemáticas y soluciones a abordar. Los experimentos en canales de agua estarán orientados a discutir y demostrar cómo la aleta caudal y el cuerpo pueden afectar considerablemente la dinámica / hidrodinámica de natación / maniobras y cómo tomar ventaja de la modulación de curvatura que la aleta caudal mórfica y el cuerpo permiten para cambiar correctamente la geometría de la aleta caudal y del cuerpo durante la natación constante y maniobras. ABSTRACT Fishes are animals where in most cases are considered as highly manoeuvrable and effortless swimmers. In general fishes are characterized for his manoeuvring skills, noiseless locomotion, rapid turning, fast starting and long distance cruising. Studies have identified several types of locomotion that fish use to generate maneuvering and steady swimming. At low speeds most fishes uses median and/or paired fins for its locomotion, offering greater maneuverability and better propulsive efficiency At high speeds the locomotion involves the body and/or caudal fin because this can achieve greater thrust and accelerations. This can inspire the design and fabrication of a highly deformable soft artificial skins, morphing caudal fins and non articulated backbone with a significant maneuverability capacity. This thesis presents the development of a novel bio-inspired and biomimetic fishlike robot (BR3) inspired by the maneuverability and steady swimming ability of ray-finned fishes (Actinopterygii, bony fishes). Inspired by the morphology of the Largemouth Bass fish, the BR3 uses its biological foundation to develop accurate mathematical models and methods allowing to mimic fish locomotion. The Largemouth Bass fishes can achieve an amazing level of maneuverability and propulsive efficiency by combining undulatory movements and morphing fins. To mimic the locomotion of the real fishes on an artificial counterpart needs the analysis of alternative actuation technologies more likely muscle fiber arrays instead of standard servomotor actuators as well as a bendable material that provides a continuous structure without joins. The Shape Memory Alloys (SMAs) provide the possibility of building lightweight, joint-less, noise-less, motor-less and gear-less robots. Thus a swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. Likewise the caudal fin is based on SMAs and is customized to provide the necessary work out. The bendable structure provides thrust and allows the BR3 to swim. On the other hand the morphing caudal fin provides roll and yaw movements. Motivated by the versatility of the BR3 to mimic all the swimming modes (anguilliform, caranguiform, subcaranguiform and thunniform) a bending-speed controller is proposed. The bending-speed control law incorporates bend angle and frequency information to produce desired swimming mode and swimming speed. Likewise according to the biological fact about the influence of caudal fin shape in the maneuverability during steady swimming an attitude control is proposed. This novel fish robot is the first of its kind to incorporate only SMAs to bend a flexible continuous structure without joints and gears to produce thrust and mimic all the swimming modes as well as the caudal fin to be morphing. This novel mechatronic design is a promising way to design more efficient swimming/morphing underwater vehicles. The novel control methodology proposed in this thesis provide a totally new way of controlling robots based on SMAs, making them more energy efficient and the incorporation of a morphing caudal fin allows to perform more efficient maneuvers. As a whole, the BR3 project consists of five major stages of development: • Study and analysis of biological fish swimming data reported in specialized literature aimed at defining design and control criteria. • Formulation of mathematical models for: i) body kinematics, ii) dynamics, iii) hydrodynamics, iv) free vibration analysis and v) SMA muscle-like actuation. It is aimed at modelling the e ects of modulating caudal fin and body bend into the production of thrust forces for swimming, rotational forces for maneuvering and energy consumption optimisation. • Bio-inspired design and fabrication of: i) skeletal structure of backbone and body, ii) SMA muscle-like mechanisms for the body and caudal fin, iii) the artificial skin, iv) electronics onboard and v) sensor fusion. It is aimed at developing the fish-like platform (BR3) that allows for testing the methods proposed. • The swimming controller: i) control of SMA-muscles (morphing-caudal fin modulation and attitude regulation) and ii) steady swimming control (bend modulation and speed modulation). It is aimed at formulating the proper control methods that allow for the proper modulation of BR3’s caudal fin and body. • Experiments: it is aimed at quantifying the effects of: i) properly caudal fin modulation into hydrodynamics and rotation production for maneuvering, ii) body bending into thrust generation and iii) skin flexibility into BR3 bending ability. It is also aimed at demonstrating and validating the hypothesis of improving swimming and maneuvering efficiency thanks to the novel control methods presented in this thesis. This thesis introduces the challenges and methods to address these stages. Waterchannel experiments will be oriented to discuss and demonstrate how the caudal fin and body can considerably affect the dynamics/hydrodynamics of swimming/maneuvering and how to take advantage of bend modulation that the morphing-caudal fin and body enable to properly change caudal fin and body’ geometry during steady swimming and maneuvering.
Resumo:
A parallel algorithm for image noise removal is proposed. The algorithm is based on peer group concept and uses a fuzzy metric. An optimization study on the use of the CUDA platform to remove impulsive noise using this algorithm is presented. Moreover, an implementation of the algorithm on multi-core platforms using OpenMP is presented. Performance is evaluated in terms of execution time and a comparison of the implementation parallelised in multi-core, GPUs and the combination of both is conducted. A performance analysis with large images is conducted in order to identify the amount of pixels to allocate in the CPU and GPU. The observed time shows that both devices must have work to do, leaving the most to the GPU. Results show that parallel implementations of denoising filters on GPUs and multi-cores are very advisable, and they open the door to use such algorithms for real-time processing.
Resumo:
A parallel algorithm to remove impulsive noise in digital images using heterogeneous CPU/GPU computing is proposed. The parallel denoising algorithm is based on the peer group concept and uses an Euclidean metric. In order to identify the amount of pixels to be allocated in multi-core and GPUs, a performance analysis using large images is presented. A comparison of the parallel implementation in multi-core, GPUs and a combination of both is performed. Performance has been evaluated in terms of execution time and Megapixels/second. We present several optimization strategies especially effective for the multi-core environment, and demonstrate significant performance improvements. The main advantage of the proposed noise removal methodology is its computational speed, which enables efficient filtering of color images in real-time applications.
Resumo:
"June 1978."
Resumo:
In the present paper we numerically study instrumental impact on statistical properties of quasi-CW Raman fiber laser using a simple model of multimode laser radiation. Effects, that have the most influence, are limited electrical bandwidth of measurement equipment and noise. To check this influence, we developed a simple model of the multimode quasi- CW generation with exponential statistics (i.e. uncorrelated modes). We found that the area near zero intensity in probability density function (PDF) is strongly affected by both factors, for example both lead to formation of a negative wing of intensity distribution. But far wing slope of PDF is not affected by noise and, for moderate mismatch between optical and electrical bandwidth, is only slightly affected by bandwidth limitation. The generation spectrum often becomes broader at higher power in experiments, so the spectral/electrical bandwidth mismatch factor increases over the power that can lead to artificial dependence of the PDF slope over the power. It was also found that both effects influence the ACF background level: noise impact decreases it, while limited bandwidth leads to its increase. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.