125 resultados para APODEMUS-FLAVICOLLIS
Resumo:
Small mammals and stray cats were trapped in two areas of North Zealand, Denmark, and their blood cultured for hemotrophic bacteria. Bacterial isolates were recovered in pure culture and subjected to 16S rDNA gene sequencing. Bartonella species were isolated from five mammalian species: B. grahamii from Microtus agrestis (field vole) and Apodemus flavicollis (yellow-necked field mouse); B. taylorii from M. agrestis, A. flavicollis and A. sylvaticus (long-tailed field mouse); B. tribocorum from A. flavicollis; R vinsonii subsp. vinsonii from M. agrestis and A. sylvaticus; and B. birtlesii from Sorex vulgaris (common shrew). In addition, two variant types of B. henselae were identified: variant I was recovered from three specimens of A. sylvaticus, and B. henselae variant 11 from I I cats; in each case this was the only B. henselae variant found. No Bartonella species was isolated from Clethrionomys glareolus (bank vole) or Micromys minutus (harvest mouse). These results suggest that B. henselae occurs in two animal reservoirs in this region, one of variant I in A. sylvaticus, which may be transmitted between mice by the tick Ixodes ricinus, and another of variant 11 in cats, which may be transmitted by the cat flea (Ctenocephalides felis). To our knowledge, this is the first report of the occurrence of B. henselae and B. tribocorum in Apodemus mice.
Resumo:
The adaptive potential of a species to a changing environment and in disease defence is primarily based on genetic variation. Immune genes, such as genes of the major histocompatibility complex (MHC), may thereby be of particular importance. In marsupials, however, there is very little knowledge about natural levels and functional importance of MHC polymorphism, despite their key role in the mammalian evolution. In a previous study, we discovered remarkable differences in the MHC class II diversity between two species of mouse opossums (Gracilinanus microtarsus, Marmosops incanus) from the Brazilian Atlantic forest, which is one of the most endangered hotspots for biodiversity conservation. Since the main forces in generating MHC diversity are assumed to be pathogens, we investigated in this study gastrointestinal parasite burden and functional associations between the individual MHC constitution and parasite load. We tested two contrasting scenarios, which might explain differences in MHC diversity between species. We predicted that a species with low MHC diversity would either be under relaxed selection pressure by low parasite diversity (`Evolutionary equilibrium` scenario), or there was a recent loss in MHC diversity leading to a lack of resistance alleles and increased parasite burden (`Unbalanced situation` scenario). In both species it became apparent that the MHC class II is functionally important in defence against gastrointestinal helminths, which was shown here for the first time in marsupials. On the population level, parasite diversity did not markedly differ between the two host species. However, we did observe considerable differences in the individual parasite load (parasite prevalence and infection intensity): while M. incanus revealed low MHC DAB diversity and high parasite load, G. microtarsus showed a tenfold higher population wide MHC DAB diversity and lower parasite burden. These results support the second scenario of an unbalanced situation.
Resumo:
Rodents are important reservoirs for a large number of zoonotic pathogens. We examined the occurrence of 11 viral, bacterial, and parasitic agents in rodent populations in Austria, including three different hantaviruses, lymphocytic choriomeningitis virus, orthopox virus, Leptospira spp., Borrelia spp., Rickettsia spp., Bartonella spp., Coxiella burnetii, and Toxoplasma gondii. In 2008, 110 rodents of four species (40 Clethrionomys glareolus, 29 Apodemus flavicollis, 26 Apodemus sylvaticus, and 15 Microtus arvalis) were trapped at two rural sites in Lower Austria. Chest cavity fluid and samples of lung, spleen, kidney, liver, brain, and ear pinna skin were collected. We screened selected tissue samples for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, Leptospira, Borrelia, Rickettsia, Bartonella spp., C. burnetii, and T. gondii by RT-PCR/PCR and detected nucleic acids of Tula hantavirus, Leptospira spp., Borrelia afzelii, Rickettsia spp., and different Bartonella species. Serological investigations were performed for hantaviruses, lymphocytic choriomeningitis virus, orthopox viruses, and Rickettsia spp. Here, Dobrava-Belgrade hantavirus-, Tula hantavirus-, lymphocytic choriomeningitis virus-, orthopox virus-, and rickettsia-specific antibodies were demonstrated. Puumala hantavirus, C. burnetii, and T. gondii were neither detected by RT-PCR/PCR nor by serological methods. In addition, multiple infections with up to three pathogens were shown in nine animals of three rodent species from different trapping sites. In conclusion, these results show that rodents in Austria may host multiple zoonotic pathogens. Our observation raises important questions regarding the interactions of different pathogens in the host, the countermeasures of the host's immune system, the impact of the host–pathogen interaction on the fitness of the host, and the spread of infectious agents among wild rodents and from those to other animals or humans.