965 resultados para ALKALINE INTRUSIONS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the strong magnetic and gravity anomalies of the Goias Alkaline Province (GAP), a region of Late Cretaceous alkaline magmatism along the northern border of the Parana Basin, Brazil. The alkaline complexes (eight of which are present in outcrops, two others inferred from magnetic signals) are characterized by a series of small intrusions forming almost circular magnetic and gravimetric anomalies varying from -4000 to +6000 nT and from -10 to +40 mGal, respectively. We used the Aneuler method and Analytical Signal Amplitude to obtain depth and geometry for mapped sources from the magnetic anomaly data. These results were used as the reference models in the 3D gravity inversion. The 3D inversion results show that the alkaline intrusions have depths of 10-12 km. The intrusions in the northern GAP follow two alignments and have different sizes. In the anomaly magnetic map, dominant guidelines correlate strongly with the extensional regimes that correlate with the rise of alkaline magmatism. The emplacement of these intrusions marks mechanical discontinuities and zones of weakness in the upper crust. According to the 3D inversion results, those intrusions are located within the upper crust (from the surface to 18 km depth) and have spheres as the preferable geometry. Such spherical shapes are more consistent with magmatic chambers instead of plug intrusions. The Registro do Araguaia anomaly (similar to 15 by 25 km) has a particular magnetic signature that indicates that the top is deeper than 1500 m. North of this circular anomaly are lineaments with structural indices indicating contacts on their edges and dikes/sills in the interiors. Results of 3D inversion of magnetic and gravity data suggest that the Registro do Araguaia is the largest body in the area, reaching 18 km depth and indicating a circular layered structure. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intraplate earthquakes in stable continental areas have been explained basically by reactivation of pre-existing zones of weakness, stress concentration, or both. Zones of weakness are usually identified as sites of the last major orogeny, provinces of recent alkaline intrusions, or stretched crust in ancient rifts. However, it is difficult to identify specific zones of weakness and intraplate fault zones are not always easily correlated with known geological features. Although Northeastern Brazil is one of the most seismically active areas in the country (magnitudes 5 roughly every 5 yr), with hypocentral depths shallower than similar to 10 km and seismic zones as long as 30-40 km, no clear relationship with the known surface geology can be usually established with confidence, and a clear identification of zones of weakness has not yet been possible. Here we present the first clear case of seismic activity occurring as reactivation of an old structure in Brazil: the Pernambuco Lineament, a major Neoproterozoic shear zone. The 2004 earthquake swarm of Belo Jardim (magnitudes up to 3.1) and the recurrent activities in the nearby towns of Sao Caetano and Caruaru (magnitudes up to 4.0 and 3.8), show that the Pernambuco Lineament is a weak zone. A local seismic network showed that the Belo Jardim swarm of 2004 November occurred by normal faulting on a North dipping, E-W oriented fault plane in close agreement with the E-W trending structures within the Pernambuco Lineament. The Belo Jardim activity was concentrated in a 1.5 km (E-W) by 2 km (downdip) fault area, and average depth of 4.5 km. The nearby Caruaru activity occurs as both strike-slip and normal faulting, also consistent with local structures of the Pernambuco Lineament. The focal mechanisms of Belo Jardim, Caruaru and S. Caetano, indicate E-W compressional and N-S extensional principal stresses. The NS extension of this stress field is larger than that predicted by numerical models such as those of Coblentz & Richardson and we propose that additional factors such as flexural stresses from the nearby Sergipe-Alagoas marginal basin could also affect the current stress field in the Pernambuco Lineament.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The area between São Paulo and Porto Alegre in southeastern Brazil plays a key area to understand and quantify the evolution of the South Atlantic passive continental margin (SAPCM) in Brazil. In this contribution, we present new thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons from metamorphic, sedimentary and intrusive rocks. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4). Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 525.1(2.4). Ma, whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0). Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.5) and 93.0 (2.5). Ma. The spatial distribution of these ages shows three distinct blocks with a different evolution cut by old fracture zones. While the central block exhibits an old stable block, the Northern and especially the Southern block underwent complex post-rift exhumation. The sample of the Northern block shows two distinct cooling phases in the Upper Cretaceous and the Paleogene to Neogene. After sedimentation of the Permian sandstones the samples of the Central block were never heated up over 100. °C with a following moderate to fast cooling phase in Cretaceous to Eocene time and a fast cooling between Oligocene to Miocene. The five thermal models obtained in the Southern block indicate a complex evolution with three cooling phases. The exhumation events of the three blocks correspond with the Paraná-Etendekka event, the alkaline intrusions due to the Trinidad hotspot, and the evolution of the continental rift basins in SE Brazil and are, therefore, most likely to be the major force for the post-rift evolution of the passive continental margin in SE Brazil, which therefore corresponds to the three main phases of the Andean orogeny. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discussions on the orogenic evolution during Earth's history converge to the question of a different thermal structure in the Archean compared to the Phanerozoic and the applicability of the plate tectonic paradigm. However, geothermal structures are transient in orogens and are difficult to translate into large-scale tectonics and exhumation rates. Therefore, we propose depth–time data in the Archean Skjoldungen Orogen (SE Greenland, North Atlantic Craton) that allow for reconstruction of an exhumation rate independent of geothermal gradients. The resulting exhumation rate of ca. 0.4 km/Ma is similar to exhumation rates during erosion-controlled processes in modern orogens. These exhumation rates can only be established by erosion time constants similar to modern orogens. The occurrence of erosion-controlled exhumation is best explained by a stiff foreland promoting localized deformation in the orogen. Therefore, a switch from magmatic-dominated processes to localized deformation is proposed in the Skjoldungen Orogen area. This is supported by a change in magma composition and volume, from widespread granodiorite to localized alkaline intrusions. In addition, the involved metasedimentary rocks include detrital zircons of the only 50 Ma older foreland, which also correspond to erosion and tectonics as in modern orogens, i.e. flysh-type sediments. Relatively fast exhumation rates and the structural-magmatic evolution of the Neoarchean Skjoldungen Orogen thus indicate modern-style tectonic processes where stiff Mesoarchean continental crust forms a foreland to a collisional orogen instead of typical accretionary tectonics of weak island arc-like terranes in granite-greenstone terranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconium- and Ba-rich minerals are found in gabbroic rocks from the Ponte Nova alkaline mafic-ultramafic massif in southeastern Brazil. The unusual mineralogical assemblage includes zirconolite, baddeleyite, Ba-rich alkali feldspar, and Ba- and Ti-rich biotite. Zirconolite of the Ponte Nova massif has higher levels of Zr (up to 1.172 apfu) than those registered in other terrestrial rocks and a prominent enrichment in the light rare-earth elements. Baddeleyite contains small quantities of Hf, Ti, and Fe. The Ba-rich alkali feldspar and Ba- and Ti-rich biotite contain up to 9.25 and 7.35 wt% BaO, respectively, and the biotite contains up to 12.01 wt% TiO(2). In the different intrusions of the Ponte Nova massif, such an unusual assemblage typifies the residual magma after the crystallization of clinopyroxene and olivine from previously enriched basanitic parental magma. The different trends of enrichments in REE and Th + U found for zirconolite of the intrusions of the Ponte Nova massif provide a better understanding of the variable degrees of enrichment of incompatible elements of the distinct gabbroic bodies. A lithospheric mantle source enriched in incompatible elements by the metasomatic action of volatile-rich fluids and with the presence of phlogopite or amphibole (or both) and other minor accessory phases could explain the presence of the Zr- and Ba-rich minerals in this gabbroic massif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for the galvanostatic discharge and recovery of porous, electrolytic manganese dioxide cathodes, similar to those found within primary alkaline batteries is presented. The phenomena associated with discharge are modeled over three distinct size scales, a cathodic (or macroscopic) scale, a porous manganese oxide particle (or microscopic) scale, and a manganese oxide crystal (or submicroscopic) scale. The physical and chemical coupling between these size scales is included in the model. In addition, the model explicitly accounts for the graphite phase within the cathode. The effects that manganese oxide particle size and proton diffusion have on cathodic discharge and the effects of intraparticle voids and microporous electrode structure are predicted using the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.