961 resultados para ADMINISTERED MORPHINE
Resumo:
Objective-To evaluate analgesic effects of epidurally administered neostigmine alone or in combination with morphine in dogs after ovariohysterectomy.Animals-40 healthy bitches.Procedures-After acepromazine premedication, anesthesia was induced. Dogs randomly received 1 of the following 4 epidural treatments 30 minutes before ovariohysterectomy (n = 10/group): saline (0.9% NaCl) solution (control), morphine (0.1 mg/kg), neostigmine (10 pg/kg), or morphine-neostigmine (0.1 mg/kg and 10 pg/kg, respectively). Analgesia was assessed for 24 hours after surgery by use of a visual analogue.scale (VAS; scale of 0 to 10) or numeric descriptive scale (NDS; scale of 0 to 24) and by the need for supplemental analgesia (morphine [0.5 mg/kg, IM] administered when VAS was >= 4 or NDS was >= 8).Results-Significantly more control dogs (n = 8) received supplemental analgesia, compared with the number of neostigmine-treated dogs (1); no dogs in the remaining groups received supplemental analgesia. Compared with values for the control dogs, the NDS scores were lower for morphine-neostigmine-treated dogs (from 2 to 6 hours and at 12 hours) and for morphine-treated dogs (all time points). The NDS scores were lower for morphine-treated dogs at 3, 12, and 24 hours, compared with values for neostigmine-treated dogs. The VAS was less sensitive than the NDS for detecting differences among groups.Conclusions and Clinical Relevance-Epidurally administered neostigmine reduced the use of supplemental analgesia after ovariohysterectorny in dogs. However, analgesic effects were less pronounced than for epidurally administered morphine or morphine-neostigmine. Adding neostigmine to epidurally administered morphine did not potentiate opioid-induced analgesia.
Resumo:
Morphine-6beta-D-glucuronide (M6G) is an analgesically active metabolite of morphine, accounting for approximate to10% of the morphine dose when administered by systemic routes to humans. Although M6G is more hydrophilic than morphine, it crosses the blood-brain barrier, albeit relatively slowly. For this reason, it is generally thought that, after chronic dosing, M6G contributes significantly to the analgesic effects of systemically administered morphine. Owing to its polar nature, M6G is cleared from the systemic circulation primarily via renal elimination. As M6G accumulates in patients with renal impairment, there is an increased risk of M6G-induced respiratory depression in renal failure patients who are being dosed chronically with systemic morphine. Consistent with its analgesic and respiratory depressant properties, M6G binds to the p-opioid receptor in a naloxone-reversible manner. Although the affinity of M6G for the mu-opioid receptor is similar to or slightly less than that of morphine, preclinical studies in rodents show that M6G is one to two orders of magnitude more potent than morphine when administered by central routes. This major discrepancy between the markedly higher intrinsic antinociceptive potency of M6G relative to morphine, despite their similar p-opioid receptor binding affinities, is difficult to reconcile. It has been proposed that M6G mediates its pain-relieving effects through a novel 'M6G opioid receptor', while others have argued that M6G may have higher efficacy than morphine for transduction of intracellular events. When administered by parenteral routes to rodents, M6G's antinociceptive potency is no more than twofold higher than morphine. In humans, the analgesic efficacy and respiratory depressant potency of M6G relative to morphine have been assessed in a number of short-term studies involving the intrathecal or intravenous routes of administration. For example, in hip replacement patients, intrathecal M6G provided excellent postoperative analgesia but the occurrence of late respiratory depression in 10% of these patients raised serious concern about safety. In postoperative patients, intravenous M6G administered by means of patient-controlled analgesia (PCA), or bolus plus PCA, produced no analgesia in one study and limited analgesia in another. Similarly, there was a lack of significant analgesia in healthy volunteers who received intravenous M6G for the alleviation of experimental pain (carbon dioxide applied to the nasal mucosa). In contrast, satisfactory analgesia was produced by bolus doses of intravenous M6G administered to patients with cancer pain, and to healthy volunteers with experimentally-induced ischaemic, electrical or thermal (ice water) pain. Studies to date in healthy volunteers suggest that intravenous M6G may be a less potent respiratory depressant and have a lower propensity for producing nausea and vomiting than morphine. However, it is unclear whether equi-analgesic doses of M6G and morphine were compared. Clearly, more extensive short-term trials, together with studies involving chronic M6G administration, are necessary before the potential clinical utility of M6G as an analgesic drug in its own right can be determined.
Resumo:
Aim
Describe the utilization of analgesic and sedative medications and documentation of pain scores in a cohort of critically ill infants in a neonatal intensive care unit.
Method
A prospective, longitudinal, cohort study of infants with a predicted length of stay =28 days. Dosages and routes of administration of analgesic and sedative medications and documentation of pain scores were collected on a daily basis.
Results
55 infants were enrolled into the study. Oral sucrose was administered to all 55 infants, 51 infants (93%) were administered enteral acetaminophen and 50 (91%) infants were administered morphine during their hospitalization. Sedatives were administered to 42 infants (76%); 36 (65%) were administered chloral hydrate and 32 (58%) were administered intravenous midazolam. With the exception of the first week of admission, when there was highest utilization of opioids and lower use of sucrose, acetaminophen and sedatives, the pattern of administration of analgesic and sedative agents remained relatively constant throughout the hospitalization. Pain scores were documented for 36 (65%) infants during their hospitalisation, however for these 36 infants, pain scores were infrequently recorded.
Conclusion
There was substantial and varied analgesic and sedative use in this cohort of infants, yet infrequent documentation of pain assessment scores. These practices highlight important clinical implications for sick infants requiring careful consideration of pain and distress management.
Resumo:
The objective of the study was to compare epidural and systemic tramadol for postoperative analgesia in bitches undergoing ovariohysterectomy. Twenty animals, randomly divided into two groups, received either epidural (EPI) or intramuscular (IM) tramadol (2 mg/kg) 30 min before anesthetic induction. Analgesia, sedation, cardiorespiratory parameters, end-tidal isoflurane, blood catecholamines and cortisol, and arterial blood gases were measured at different time points up to 24 hr after agent administration. There were no differences between the two groups regarding cardiorespiratory parameters, end-tidal isoflurane, and pain scores. Two dogs in the IM and one in the EPI group required supplemental analgesia. Cortisol was increased (P<0.05) at 120 min (3.59 mu g/dL and 3.27 mu g/dL in the IM and EPI groups, respectively) and 240 min (2.45 mu g/dL and 2.54 mu g/dL in the IM and EPI groups, respectively) compared to baseline. Norepinephrine was also increased (P<0.05) at 120 min in both groups compared to baseline values. Epinephrine values were higher (P<0.05) in the IM group compared with the EPI group at 50 min, 120 min, and 1,440 min after tramadol administration. Epidural tramadol is a safe analgesic, but does not appear to have improved analgesic effects compared with IM administration. (J Am Anim Hosp Assoc 2012; 48:310-319. DOI 10.5326/JAAHA-MS-5795)
Resumo:
To evaluate the effectiveness of epidural lidocaine in combination with either methadone or morphine for postoperative analgesia in cats undergoing ovariohysterectomy. Under general anesthesia, 24 cats that underwent ovariohysterectomy were randomly allocated into three treatments groups of eight each. Treatment 1 included 2% lidocaine (4.0 mg/kg); treatment 2 included lidocaine and methadone (4.0 mg/kg and 0.3 mg/kg, respectively); and treatment 3 included lidocaine and morphine (4.0 mg/kg and 0.1 mg/kg, respectively). All drugs were injected in a total volume of 0.25 ml/kg via the lumbosacral route in all cats. During the anesthetic and surgical periods, the physiological variables (respiratory and heart rate, arterial blood pressure and rectal temperature) were measured at intervals of time zero, 10 mins, 20 mins, 30 mins, 60 mins and 120 mins. After cats had recovered from anesthesia, a multidimensional composite pain scale was used to assess postoperative analgesia at 2, 4, 8, 12, 18, and 24 h after epidural. The time to first rescue analgesic was significantly (P <0.05) prolonged in cats that received both lidocaine and methadone or lidocaine and morphine treatments compared with those that received the lidocaine treatment. All cats that received lidocaine treatment alone required rescue analgesic within 2 h of epidural injections. All treatments had significant cardiovascular and respiratory changes but they were within acceptable range for healthy animals during the surgical period. The two combinations administered via epidural allowed ovariohysterectomy with sufficient analgesia in cats, and both induced prolonged postoperative analgesia.
Resumo:
Objective. Leconotide (CVID, AM336, CNSB004) is an omega conopeptide similar to ziconotide, which blocks voltage sensitive calcium channels. However, unlike ziconotide, which must be administered intrathecally, leconotide can be given intravenously because it is less toxic. This study investigated the antihyperalgesic potency of leconotide given intravenously alone and in combinations with morphine-administered intraperitoneally, in a rat model of bone cancer pain. Design. Syngeneic rat prostate cancer cells AT3B-1 were injected into one tibia of male Wistar rats. The tumor expanded within the bone causing hyperalgesia to heat applied to the ipsilateral hind paw. Measurements were made of the maximum dose (MD) of morphine and leconotide given alone and in combinations that caused no effect in an open-field activity monitor, rotarod, and blood pressure and heart rate measurements. Paw withdrawal thresholds from noxious heat were measured. Dose response curves for morphine (0.312–5.0 mg/kg intraperitoneal) and leconotide (0.002–200 µg/kg intravenous) given alone were plotted and responses compared with those caused by morphine and leconotide in combinations. Results. Leconotide caused minimal antihyperalgesic effects when administered alone. Morphine given alone intraperitoneally caused dose-related antihyperalgesic effects (ED50 = 2.40 ± 1.24 mg/kg), which were increased by coadministration of leconotide 20 µg/kg (morphine ED50 = 0.16 ± 1.30 mg/kg); 0.2 µg/kg (morphine ED50 = 0.39 ± 1.27 mg/kg); and 0.02 µg/kg (morphine ED50 = 1.24 ± 1.30 mg/kg). Conclusions. Leconotide caused a significant increase in reversal by morphine of the bone cancer-induced hyperalgesia without increasing the side effect profile of either drug. Clinical Implication. Translation into clinical practice of the method of analgesia described here will improve the quantity and quality of analgesia in patients with bone metastases. The use of an ordinary parenteral route for administration of the calcium channel blocker (leconotide) at low dose opens up the technique to large numbers of patients who could not have an intrathecal catheter for drug administration. Furthermore, the potentiating synergistic effect with morphine on hyperalgesia without increased side effects will lead to greater analgesia with improved quality of life.
Resumo:
This study evaluated the analgesia effects of the epidural administration of 0.1 mg/kg bodyweight (BW) of morphine or 5 mu g/kg BW of buprenorphine in ponies with radiocarpal joint synovitis. Six ponies were submitted to 3 epidural treatments: the control group (C) received 0.15 mL/kg BW of a 0.9% sodium chloride (NaCl) solution; group M was administered 0.1 mg/kg BW of morphine; and group B was administered 5 mu g/kg BW of buprenorphine, both diluted in 0.9% NaCl to a total volume of 0.15 mL/kg BW administered epidurally at 10 s/mL. The synovitis model was induced by injecting 0.5 ng of lipopolysaccharide (LPS) in the left or right radiocarpal joint. An epidural catheter was later introduced in the lumbosacral space and advanced up to the thoracolumbar level. The treatment started 6 h after synovitis induction. Lameness, maximum angle of carpal flexion, heart rate, systolic arterial pressure, respiratory rate, temperature, and intestinal motility were evaluated before LPS injection (baseline), 6 h after LPS injection (time 0), and 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, and 24 h after treatments. Although the model of synovitis produced clear clinical signs of inflammation, the lameness scores in group C were different from the baseline for only up to 12 h. Both morphine and buprenorphine showed a reduction in the degree of lameness starting at 0.5 and 6 h, respectively. Reduced intestinal motility was observed at 0.5 h in group M and at 0.5 to 1 h in group B. Epidural morphine was a more effective analgesic that lasted for more than 12 h and without side effects. It was concluded that morphine would be a valuable analgesic option to alleviate joint pain in the thoracic limbs in ponies.
Resumo:
ObjectiveTo evaluate and compare the postoperative analgesia provided by epidural lidocaine, lidocaine/morphine or lidocaine/tramadol in dogs following elective orchiectomy.Study designProspective experimental trial.AnimalsThirty-six mongrel dogs aged 2-8 years old, weighing 6.6-22 kg.MethodsThe dogs received 6.0 mg kg-1 of lidocaine combined with 1.0 mg kg-1 of tramadol, 0.1 mg kg-1 of morphine or 0.01 mL kg-1 of 0.9% NaCl epidurally. Analgesia was assessed at 4, 8, 12, 18 and 24 hours (T4, T8, T12 and T24) after the offset of lidocaine using a scale composed of physiologic and behavioral parameters. Rescue analgesia with morphine (0.2 mg kg-1, IM) was performed if the evaluation score exceeded 10 during the postoperative period. The scores over time were analyzed using the Friedman's two-way analysis of variance and the comparison between groups was made by the Kruskal-Wallis test with statistical significances accepted if p < 0.05.ResultsThere were no differences in the pain scores between the morphine and tramadol groups over time and no rescue analgesia was administered. In the NaCl group, rescue analgesia was needed at T4, T8 and T12. Within this group, the final evaluation times (T18 and T24) had lower pain scores than at T4, T8 and T12.Conclusions and clinical relevanceEpidural lidocaine/tramadol provided an analgesic effect comparable to that of epidural lidocaine/morphine during the first 12 hours after surgical castration without substantial side effects, suggesting that tramadol may be an effective postoperative analgesic in dogs submitted to this surgical procedure.
Resumo:
To compare the effects of morphine (MOR), methadone (MET), butorphanol (BUT) and tramadol (TRA), in combination with acepromazine, on sedation, cardiorespiratory variables, body temperature and incidence of emesis in dogs.Prospective randomized, blinded, experimental trial.Six adult mixed-breed male dogs weighing 12.0 +/- 4.3 kg.Dogs received intravenous administration (IV) of acepromazine (0.05 mg kg(-1)) and 15 minutes later, one of four opioids was randomly administered IV in a cross-over design, with at least 1-week intervals. Dogs then received MOR 0.5 mg kg(-1); MET 0.5 mg kg(-1); BUT 0.15 mg kg(-1); or TRA 2.0 mg kg(-1). Indirect systolic arterial pressure (SAP), heart rate (HR), respiratory rate (f(R)), rectal temperature, pedal withdrawal reflex and sedation were evaluated at regular intervals for 90 minutes.Acepromazine administration decreased SAP, HR and temperature and produced mild sedation. All opioids further decreased temperature and MOR, BUT and TRA were associated with further decreases in HR. Tramadol decreased SAP whereas BUT decreased f(R) compared with values before opioid administration. Retching was observed in five of six dogs and vomiting occurred in one dog in MOR, but not in any dog in the remaining treatments. Sedation scores were greater in MET followed by MOR and BUT. Tramadol was associated with minor changes in sedation produced by acepromazine alone.When used with acepromazine, MET appears to provide better sedation than MOR, BUT and TRA. If vomiting is to be avoided, MET, BUT and TRA may be better options than MOR.
Resumo:
ObjectiveTo compare the post-operative analgesic effects of butorphanol or firocoxib in dogs undergoing ovariohysterectomy.Study designProspective, randomized, blinded, clinical trial.AnimalsTwenty-five dogs > 1 year of age.MethodsDogs received acepromazine intramuscularly (IM), 0.05 mg kg-1 and either butorphanol IM, 0.2 mg kg-1 (BG, n = 12) or firocoxib orally (PO), 5 mg kg-1 (FG, n = 13), approximately 30 minutes before induction of anesthesia with propofol. Anesthesia was maintained with isoflurane. Ovariohysterectomy was performed by the same surgeon. Pain scores using the dynamic and interactive visual analog scale (DIVAS) were performed before and at 1, 2, 3, 4, 6, 8 and 20 hours after the end of surgery by one observer, blinded to the treatment. Rescue analgesia was provided with morphine (0.5 mg kg-1) IM and firocoxib, 5 mg kg-1 (BG only) PO if DIVAS > 50. Groups were compared using paired t-tests and Fisher's exact test (p < 0.05). Data are presented as mean +/- SD.ResultsThe BG required significantly less propofol (BG: 2.6 +/- 0.59 mg kg-1; FG: 5.39 +/- 0.7 mg kg-1) (p < 0.05) but the anesthesia time was longer (BG: 14 +/- 6, FG: 10 +/- 4 minutes). There were no differences for body weight (BG: 7.9 +/- 5.0, FG: 11.5 +/- 4.6 kg), sedation scores, and surgery and extubation times (BG: 10 +/- 2, 8 +/- 5 minutes; FG: 9 +/- 3, 8 +/- 4 minutes, respectively) (p > 0.05). The FG had significantly lower pain scores than the BG at 1, 2 and 3 hours following surgery (p < 0.05). Rescue analgesia was administered to 11/12 (92%) and 2/13 (15%) dogs in the BG and FG, respectively (p < 0.05).Conclusion and clinical relevanceFirocoxib produced better post-operative analgesia than butorphanol. Firocoxib may be used as part of a multimodal analgesia protocol but may not be effective as a sole analgesic.
Resumo:
Since all analgesics currently available for use in dogs have been associated with some adverse effects, the search for an effective analgesic that does not cause harm is important. This study investigated the postoperative analgesic effects of ozone administered either intrarectally or into acupoints in bitches undergoing ovariohysterectomy (OH). Twenty-four healthy adult bitches were randomly assigned to one of the three treatments 10min after sedation, as follows: 0.2mg/kg of intramuscular (IM) meloxicam (M); rectal insufflation of 10mL of 30μg/mL ozone (OI), or acupoint injection of 0.5mL ozone (30μg/mL; OA). Following sedation with acetylpromazine, anaesthesia was induced with propofol and fentanyl and maintained with isoflurane/O2. Pain was assessed using the modified Glasgow pain scale (MGPS) and the visual analogue scale (VAS) on the day before surgery, before anaesthesia, and at 1, 2, 4, 6, 8, 12 and 24h after surgery. Rescue analgesia was performed using 0.5mg/kg of morphine IM if MGPS was >3.33 points.No statistically significant differences in pain scales were found among the three analgesic protocols or the time points in each group ( P>. 0.05). Two dogs treated with OA required rescue analgesia. Meloxicam, rectal insufflation of ozone and ozone injected into acupoints provided satisfactory analgesia for 24. h in bitches undergoing elective OH. Ozone had no measurable adverse effects and is an alternative option to promote pain relief. © 2013 Elsevier Ltd.
Resumo:
The purpose of this study is to evaluate the effects of high doses of injected opiates as prescribed maintenance in intravenous drugs users. This was accomplished via a randomised double-blind study with crossover at an outpatient clinic in Bern, Switzerland. The subjects were 39 patients with a long history of intravenous opioid use and persistent abuse despite treatment; they were randomly allocated to two groups. Group A was started on controlled injection of graduated doses of morphine up to a satisfying individual dose and was then switched as a double blind to heroin at a randomly determined day between week three and four. Subsequently this group was given heroin for the remaining two to three weeks of the study. Group B was started on heroin and was then switched to morphine in the same manner. Equipotent solutions of 3% morphine and 2% heroin were administered. The main outcome measures were clinical observations, structural interviews and self report of subjective experiences to assess the effects of the drugs. In 16 cases, the study had to be discontinued owing to severe morphine-induced histamine reactions. Thirteen participants in Group B presented these adverse reactions on the day of the switch-over. Full data were thus only obtainable for 17 participants. Average daily doses were 491 mg for heroin and 597 mg for morphine. The findings indicate that heroin significantly produced a lower grade of itching, flushing, urticaria and pain/nausea. A negative correlation between dose and euphoria was observed for both heroin and morphine. The authors concluded that as heroin produces fewer side effects it is the preferred high-dose maintenance prescription to morphine. The perceived euphoric effects are limited in both substances.
Resumo:
The effect of the opioid antagonists naloxone-3-glucuronide and N-methylnaloxone on rat colon motility after morphine stimulation was measured. The rat model consisted of the isolated, vascularly perfused colon. The antagonists (10(-4) M, intraluminally) and morphine (10(-4) M, intra-arterially) were administered from 20 to 30 and from 10 to 50 min, respectively. Colon motility was determined by the luminal outflow. The antagonist concentrations in the luminal and venous outflow were measured by high-performance liquid chromatography. Naloxone-3-glucuronide and N-methylnaloxone reversed the morphine-induced reduction of the luminal outflow to baseline within 10 and 20 min, respectively. These antagonists were then excreted in the luminal outflow and could not be found in the venous samples. Naloxone, produced by hydrolysis or demethylation, was not detectable. In conclusion, highly polar naloxone derivatives peripherally antagonize the motility-lowering effect of morphine in the perfused isolated rat colon, are stable, and are not able to cross the colon-mucosal blood barrier.