851 resultados para ACHIASMATIC MALE MEIOSIS
Resumo:
Etoposide, a topoisomerase II inhibitor widely used in cancer therapy, is suspected of inducing secondary tumors and affecting the genetic constitution of germ cells. A better understanding of the potential heritable risk of etoposide is needed to provide sound genetic counseling to cancer patients treated with this drug in their reproductive years. We used a mouse model to investigate the effects of clinical doses of etoposide on the induction of chromosomal abnormalities in spermatocytes and their transmission to zygotes by using a combination of chromosome painting and 4′,6-diamidino-2-phenylindole staining. High frequencies of chromosomal aberrations were detected in spermatocytes within 64 h after treatment when over 30% of the metaphases analyzed had structural aberrations (P < 0.01). Significant increases in the percentages of zygotic metaphases with structural aberrations were found only for matings that sampled treated pachytene (28-fold, P < 0.0001) and preleptotene spermatocytes (13-fold, P < 0.001). Etoposide induced mostly acentric fragments and deletions, types of aberrations expected to result in embryonic lethality, because they represent loss of genetic material. Chromosomal exchanges were rare. Etoposide treatment of pachytene cells induced aneuploidy in both spermatocytes (18-fold, P < 0.01) and zygotes (8-fold, P < 0.05). We know of no other report of an agent for which paternal exposure leads to an increased incidence of aneuploidy in the offspring. Thus, we found that therapeutic doses of etoposide affect primarily meiotic germ cells, producing unstable structural aberrations and aneuploidy, effects that are transmitted to the progeny. This finding suggests that individuals who undergo chemotherapy with etoposide may be at a higher risk for abnormal reproductive outcomes especially within the 2 months after chemotherapy.
Resumo:
Mitotic and meiotic chromosomes of Tityus bahiensis were investigated using light (LM) and transmission electron microscopy (TEM) to determine the chromosomal characteristics and disclose the mechanisms responsible for intraspecific variability in chromosome number and for the presence of complex chromosome association during meiosis. This species is endemic to Brazilian fauna and belongs to the family Buthidae, which is considered phylogenetically basal within the order Scorpiones. In the sample examined, four sympatric and distinct diploid numbers were observed: 2n = 5, 2n = 6, 2n = 9, and 2 = 10. The origin of this remarkable chromosome variability was attributed to chromosome fissions and/or fusions, considering that the decrease in chromosome number was concomitant with the increase in chromosome size and vice versa. The LM and TEM analyses showed the presence of chromosomes without localised centromere, the lack of chiasmata and recombination nodules in male meiosis, and two nucleolar organiser regions carrier chromosomes. Furthermore, male prophase I cells revealed multivalent chromosome associations and/or unsynapsed or distinctly associated chromosome regions (gaps, less-condensed chromatin, or loop-like structure) that were continuous with synapsed chromosome segments. All these data permitted us to suggest that the chromosomal rearrangements of T. bahiensis occurred in a heterozygous state. A combination of various factors, such as correct disjunction and balanced segregation of the chromosomes involved in complex meiotic pairing, system of achiasmate meiosis, holocentric nature of the chromosomes, population structure, and species dispersion patterns, could have contributed to the high level of chromosome rearrangements present in T. bahiensis.
Resumo:
The order Scorpiones is one of the most cytogenetically interesting groups within Arachnida by virtue of the combination of chromosome singularities found in the 59 species analyzed so far. In this work, mitotic and meiotic chromosomes of 2 species of the family Bothriuridae were detailed. This family occupies a basal position within the superfamily Scorpionoidea. Furthermore, review of the cytogenetic data of all previously studied scorpions is presented. Light microscopy chromosome analysis showed that Bothriurus araguayae and Bothriurus rochensis possess low diploid numbers compared with those of species belonging to closely related families. Gonadal cells examined under light and in transmission electron microscopy revealed, for the first time, that the Bothriuridae species possess typical monocentric chromosomes, and male meiosis presented chromosomes with synaptic and achiasmatic behavior. Moreover, in the sample of B. araguayae studied, heterozygous translocations were verified. The use of techniques to highlight specific chromosomal regions also revealed additional differences between the 2 Bothriurus species. The results herein recorded and the overview elaborated using the available cytogenetic information of Scorpiones elucidated current understanding regarding the processes of chromosome evolution that have occurred in Bothriuridae and in Scorpiones as a whole.
Resumo:
Immunofluorescence has identified seven monoclonal antibodies reactive with the surface of meiotic cells and absent in premeiotic cells. Analysis by immunogold electron microscopy indicated that these antigens were present on the external surface of the cells and were coincident with the presence of synaptonemal complexes in the nucleus. On immunoblots a common glycosylated protein of 205 kDa was recognized, in addition to smaller subunits, suggesting the presence of a protein complex comprised of smaller peptides.
Resumo:
EI Mikhailova, SP Sosnikhina, GA Kirillova, OA Tikholiz, VG Smirnov, RN Jones and G Jenkins (2001). Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). Journal of Cell Science, 114 (10), 1875-1882. Sponsorship: Russian Foundation for Basic Research (grants 00-04-48522/ 99-04-48182) RAE2008
Resumo:
Monoclonal antibodies have been prepared against purified pachytene cells from grasshopper testes. Immunoblotting and immunofluorescence analyses identified those monoclonal antibodies which showed specificity for antigens in pachytene cells. Several antigenic changes were found to be associated with meiotic cells. Five monoclonal antibodies detected antigens which were located in the cytoplasm of premeiotic cells but were nuclear during meiosis. One monoclonal antibody showed a discrete cytoplasmic fluorescent pattern in meiotic, but not in premeiotic, cells. Another bound specifically to the nuclei of some epithelial cells at the base of follicles in mature testes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Toluidine Blue dye containing increasing concentrations of Mg2+ or Ca2+ can show loss of metachromacy at a certain concentration of the inorganic cation when staining DNA-protein complexes in vitro and in vivo. This process has been named Critical Electrolyte Concentration (CEC) and is applied to the study of protein-nucleic acid complexes at different stages of chromatin supra-organization. Male gametocytes of the species Pseudonannolene tocaiensis were studied, observing a large amount of ribonucleoproteins in the gametocytes cytoplasm throughout prophase I. The nucleolus is maintained during most of the prophase. The highly condensed region showing the bouquet formation appeared stained with the typical tonality for chromatin; this region corresponds to the constitutive heterochromatin. We also observed the presence of RNA all through the chromosomes in prophase I. The permanence of this material surrounding the chromosomes during male meiosis is difficult to explain, since a great reduction of the products of spermatogenesis occurs due to the fact that most of the material of the spermatozoids is not used during fecundation. However, in P. tocaiensis this material is remains even at the spermatids. It is known that during the spermiogenesis of certain insects, RNA synthesis continues at the spermatid, being subsequently eliminated from the nucleus and then from the cell due to the elongation of the nucleus. Therefore, we could suggest that permanence of this material (RNA) during meiosis has a function in the process of cell division.
Resumo:
The pattern of silver nitrate (Ag)-staining differed among testicular lobes of Antiteuchus tripterus. In general, these differences are in regard to the number, size, shape, coloring intensity, and location of the stained bodies or masses, observed during meiosis and spermiogenesis. These characteristics were similar in lobes 1-3. Lobes 4-6, however, differed from each other and from lobes 1-3 as well. Because the Ag-staining method is specific for nucleolar organizing regions and nucleolar material, the observations in meiosis of lobes 1-3 suggested the presence of a single pair of nucleolar organizing region-bearing chromosomes in A. tripterus, as previously found in other Pentatomidae species. In general, the amount of Ag-stained material seen in meiosis of the testicular lobes 1-3 of A. tripterus is smaller than in the other lobes. The differences among lobes observed during spermiogenesis included a striking variation in morphology of the Ag-stained material found in the head and tail of the spermatids. Given that the key role of the nucleolar material is to participate in protein synthesis, interlobular variations seem to be related to the different functions attributed to each lobe (reproduction to lobes 1-3 and basically nutrition to lobes 4-6). To our knowledge, this is the first time that the nucleolar material was studied in each testicular lobe during spermatogenesis. The present observations encourage further studies since, in addition to being of basic biological interest, several Pentatomidae species are agricultural pests and added knowledge of their biology, mainly in reproduction, may be important for the development of control strategies. ©FUNPEC-RP.
Resumo:
Triatomines are of great concern in public health because they are vectors of Chagas' disease. This study presents an analysis of the species Triatoma melanosoma. The cytogenetic characteristics of triatomines include holocentric chromosomes, post-reductional meiosis in the sex chromosomes and nucleolar fragmentation in the meiotic cycle. The methodology utilized consisted of the techniques of lacto-acetic orcein staining and silver ion impregnation. The organs analyzed were adult testicles. The results enabled to classify the chromosomes by number and size, being three large, eight medium and one small heterochromosome. The three largest chromosomes and the heterochromosomes showed heteropyknotic chromatin in meiosis. The heterochromosomes in 8.05% of the cells in metaphase I behaved as pseudobivalents, contrasting with 91.95% of the cells with individualized sex chromosomes, confirming the achiasmatic nature of these chromosomes. However, the pseudobivalents occurred prominently in metaphase II (78.38%), this fact probably is related to the post-reductional nature of the sex chromosomes. The nucleolus in T. melanosoma persisted until the diplotene phase after which it began to fragment. Nucleolar corpuscles were observed in metaphases I and II and during anaphases I and II, these characteristics being related to the phenomenon of nucleolar persistence. In the initial spermatids, peripheral silver ion impregnation occurred, which could be analogous to the pre-nucleolar corpuscles observed after fragmentation. Thus, this study extends our knowledge of the characteristics of triatomines, in particular, heteropyknotic degree, kinetic activity, formation of sex chromosome achiasmatic pseudobivalency, confirmation of the fragmentation phenomenon, and post-meiotic nucleolar reactivation. ©FUNPEC-RP.
Resumo:
Males of Limnogonus aduncus were found to have the sex chromosome system X0 and chromosome number 2n = 23 (22A + X0). Testis cells were stained with lacto-acetic orcein and silver nitrate so that changes in the morphology and degree of staining of the heteropicnotic chromatin and the nucleolar material could be observed during meiosis and spermiogenesis. These structures share the same nuclear position and could be seen until almost the end of spermiogenesis. A chromosome region stained with silver nitrate was indicative of a nucleolar organizing region (NOR), which is rarely detected in Heteroptera with this technique. The NOR is located at one end of a single member of an autosome pair. The finding of this stained region enabled us to observe that the telomeric association of sister chromatids that characterizes the Heteroptera does not include the chromosome ends, where NORs are located; we also observed in anaphase that the chromosome end through which it is pulled to the pole is the one containing the NOR. Another observation was that the single nucleolar body present in the cells at anaphase never goes to the cell pole that does not receive the NOR. We conclude that L. aduncus is a good model for cytogenetic studies involving nucleolar activity and also may be useful for studying the mechanisms of activation and inactivation of kinetic activity at the chromosome ends. Although the chromosomes of Heteroptera are known to be holocentric, whether kinetic activity is restricted to one or involves both chromosome ends is still not well understood.
Resumo:
Recently many exciting advances have been achieved in our understanding of Drosophila meiosis due to combined cytological and genetic approaches. New techniques have permitted the characterization of chromosome position and spindle formation in female meiosis I. The proteins encoded by the nod and ncd genes, two genes known to be needed for the proper partitioning of chromosomes lacking exchange events, have been identified and found to be kinesin-like motors. The effects of mutations in these genes on the spindle and chromosomes, together with the localization of the proteins, have yielded a model for the mechanism of female meiosis I. In male meiosis I, the chromosomal regions responsible for homolog pairing have been resolved to the level of specific DNA sequences. This provides a foundation for elucidating the molecular basis of meiotic pairing. The cytological techniques available in Drosophila also have permitted inroads into the regulation of sister-chromatid segregation. The products of two genes (mei-S332 and ord) essential for sister-chromatid cohesion have been identified recently. Additional advances in understanding Drosophila meiosis are the delineation of a functional centromere by using minichromosome derivatives and the identification of several regulatory genes for the meiotic cell cycle.
Resumo:
Sexual reproduction is the main reproductive strategy of the overwhelming majority of eukaryotes. This suggests that the last eukaryotic common ancestor was able to reproduce sexually. Sexual reproduction reflects the ability to perform meiosis, and ultimately generating gametes, which are cells that carry recombined half sets of the parental genome and are able to fertilize. These functions have been allocated to a highly specialized cell lineage: the germline. Given its significant evolutionary conservation, it is to be expected that the germline programme shares common molecular bases across extremely divergent eukaryotic species. In the present review, we aim to identify the unifying principles of male germline establishment and development by comparing two very disparate kingdoms: plants and animals. We argue that male meiosis defines two temporally regulated gene expression programmes: the first is required for meiotic commitment, and the second is required for the acquisition of fertilizing ability. Small RNA pathways are a further key communality, ultimately ensuring the epigenetic stability of the information conveyed by the male germline.