1000 resultados para ACARICIDE RESISTANCE
Resumo:
This manuscript provides a summary of the results presented at a symposium organized to accumulate information on factors that influence the prevalence of acaricide resistance and tick-borne diseases. This symposium was part of the 19th International Conference of the World Association for the Advancement of Veterinary Parasitology (WAAVP), held in New Orleans, LA, USA, during August 10-14, 2003. Populations of southern cattle ticks, Boophilus microplus, from Mexico have developed resistance to many classes of acaricide including chlorinated hydrocarbons (DDT), pyrethroids, organ ophosphates, and formamidines (amitraz). Target site mutations are the most common resistance mechanism observed, but there are examples of metabolic mechanisms. In many pyrethroid resistant strains, a single target site mutation on the Na+ channel confers very high resistance (resistance ratios: >1000x) to both DDT and all pyrethroid acaricides. Acetylcholine esterase affinity for OPs is changed in resistant tick populations. A second mechanism of OP resistance is linked to cytochrome P450 monooxygenase activity. A PCR-based assay to detect a specific sodium channel gene mutation that is associated with resistance to permethrin has been developed. This assay can be performed on individual ticks at any life stage with results available in a few hours. A number of Mexican strains of B. microplus with varying profiles of pesticide resistance have been genotyped using this test. Additionally, a specific metabolic esterase with permethrin-hydrolyzing activity, CzEst9, has been purified and its gene coding region cloned. This esterase has been associated with high resistance to permethrin in one Mexican tick population. Work is continuing to clone specific acetylcholinesterase (AChE) and carboxylesterase genes that appear to be involved in resistance to organophosphates. Our ultimate goal is the design of a battery of DNA- or ELISA-based assays capable of rapidly genotyping individual ticks to obtain a comprehensive profile of their susceptibility to various pesticides. More outbreaks of clinical bovine babesisois and anaplasmosis have been associated with the presence of synthetic pyrethroid (SP) resistance when compared to OP and amidine resistance. This may be the result of differences in the temporal and geographic patterns of resistance development to the different acaricides. If acaricide resistance develops slowly, herd immunity may not be affected. The use of pesticides for the control of pests of cattle other than ticks can affect the incidence of tick resistance and tick-borne diseases. Simple analytical models of tick- and tsetse-bome diseases suggest that reducing the abundance of ticks, by treating cattle with pyrethroids for example, can have a variety of effects on tick-bome diseases. In the worst-case scenario, the models suggest that treating cattle might not only have no impact on trypanosomosis but could increase the incidence of tick-bome disease. In the best-case, treatment could reduce the incidence of both trypanosomosis and tick-bome diseases Surveys of beef and dairy properties in Queensland for which tick resistance to amitraz was known were intended to provide a clear understanding of the economic and management consequences resistance had on their properties. Farmers continued to use amitraz as the major acaricide for tick control after the diagnosis of resistance, although it was supplemented with moxidectin (dairy farms) or fluazuron, macrocyclic lactones or cypermethrin/ chlorfenvinphos. (C) 2004 Published by Elsevier B.V.
Resumo:
A field survey of resistance was conducted based on the larval packet test technique with synthetic pyrethroids (cypermethrin and deltamethrin) and organophosphates (chlorpyriphos) in Rhipicephalus (Boophilus) microplus field populations from six different regions of the State of Sao Paulo (Brazil). 82.6% of the populations showed resistance to cypermethrin, 86.36% to deltamethrin and 65.25% to chlorpyriphos, with 50% presenting resistance to both SP and OP acaricide. According to the questionnaires completed by the producers, OP + SP mixtures followed by SP-only formulations were the products most commonly used for controlling the cattle tick in the surveyed areas. The present study showed high occurrence of resistance to SP and OP in the State of Sao Paulo, Brazil and revealed the type of strategy adopted by small dairy farms in this state. This information is fundamental in order to establish the monitoring of resistance on each farm individually, contributing to the rational use of acaricides for the control of R. (B.) microplus. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Rhipicephalus (Boophilus) microplus obtained from four local populations in Uruguay (2007-2008) were subjected to various bioassay techniques to determine the presence of fipronil resistance within the country. Resistance ratios (RRs) obtained by larval immersion test varied between 3.3 and 3635 for tick populations subjected to treatment with fipronil for the last 3-7 years. The highest RR was observed in the population which received fewer treatments. Using discriminating concentration (8 ppm) for larval immersion test, all field strains were correctly diagnosed as fipronil-resistant. This study presents the first diagnoses of cattle tick resistance to fipronil in Uruguay`s field populations. It also highlights the importance of the possible conflict between programs to control agricultural pests and cattle ticks. The findings provide valuable information for selection and adoption of new control alternatives to manage drug resistance exhibited by cattle ticks. (C) 2009 Elsevier BM. All rights reserved.
Resumo:
Esterases are a group of enzymes that are reportedly associated with acaricide resistance in Riphicephallus (Boophilus) microplus. A comparative analysis was made of the esterase patterns in malathion and deltamethrin-sensitive, tolerant and resistant tick groups, using non-denaturing polyacrylamide gel electrophoresis. Electrophoretical profiles revealed four bands of esterase activity against alpha-naphthyl acetate; which were dubbed EST-1 to EST-4. The EST-3 and EST-4 were detected in all strains and were classified as carboxylesterases (CaEs). The EST-2, classified as an acetylcholinesterase (AChE), was detected in all groups, but its staining intensity increased from susceptible to resistant groups, indicating an altered production according to the degree of resistance. EST-1, which was also classified as an AChE, was detected exclusively in tolerant and resistant groups to both acaricides, but displayed greater activity in the malathion-resistant group. These data suggest that these AChEs may represent an important detoxification strategy developed to overcome the effects of acaricides. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The applicability of laboratory bioassays to diagnose ivermectin (IVM) resistance in Rhipicephalus microplus was evaluated. Adult immersion tests (AITs), larval immersion tests (LITs) and larval packet tests (LPTs) were performed to characterise the effects of ivermectin toxicity on adults and larvae of a susceptible reference strain. The AIT was determined to be a reasonable assay but requires a large number of individuals to attain interpretable results. The LIT and LPT were validated with an IVM resistant strain, revealing resistance ratios (RRs) of 6.73 and 1.49, respectively. In a field survey, nine different populations of cattle tick from the states of Sao Paulo and Mato Grosso do Sul, Brazil, were analysed with the LIT. Populations without previous exposure to ivermectin exhibited RRs between 0.87 and 1.01. Populations previously exposed to IVM showed RRs between 1.83 and 4.62. The LIT was more effective at discriminating between resistant and susceptible populations than the LPT. The use of the LIT is recommended for the diagnosis of ivermectin resistance in R microplus. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) ticks cause economic losses for cattle industries throughout tropical and subtropical regions of the world estimated at $US2.5 billion annually. Lack of access to efficacious long-lasting vaccination regimes and increases in tick acaricide resistance have led to the investigation of targets for the development of novel tick vaccines and treatments. In vitro tick feeding has been used for many tick species to study the effect of new acaricides on the transmission of tick-borne pathogens. Few studies have reported the use of in vitro feeding for functional genomic studies using RNA interference and/or the effect of specific anti-tick antibodies. In particular, in vitro feeding reports for the cattle tick are limited due to its relatively short hypostome. Previously published methods were further modified to broaden optimal tick sizes/weights, feeding sources including bovine and ovine serum, optimisation of commercially available blood anti-coagulant tubes, and IgG concentrations for effective antibody delivery. Ticks are fed overnight and monitored for ∼5–6 weeks to determine egg output and success of larval emergence using a humidified incubator. Lithium-heparin blood tubes provided the most reliable anti-coagulant for bovine blood feeding compared with commercial citrated (CPDA) and EDTA tubes. Although >30 mg semi-engorged ticks fed more reliably, ticks as small as 15 mg also fed to repletion to lay viable eggs. Ticks which gained less than ∼10 mg during in vitro feeding typically did not lay eggs. One mg/ml IgG from Bm86-vaccinated cattle produced a potent anti-tick effect in vitro (83% efficacy) similar to that observed in vivo. Alternatively, feeding of dsRNA targeting Bm86 did not demonstrate anti-tick effects (11% efficacy) compared with the potent effects of ubiquitin dsRNA. This study optimises R. microplus tick in vitro feeding methods which support the development of cattle tick vaccines and treatments.
Resumo:
Laboratory test was carried out on larvae and adults of the cattle tick, Rhipicephalus (Boophilus) microplus, to determine fipronil toxicity. Adult immersion test (AIT, N = 26), larval immersion test (LIT, N = 71) and larval packet test (LPT, N = 41) were standardized using susceptible strain (Mozo). Dose-response curves were compared with a fipronil resistant strain. Four variables were analyzed from AIT results: mortality, weight of eggs on day 7 and on day 14, index of fertility, and index of fecundity. For larval test, dose mortality curves were analyzed. In spite of the high LC(50) variability, all variables determined for AIT were appropriate to discriminate both strains. AIT and LIT had more sensitivity than LPT, with larger resistance factors. It was used two times LC(99.9) as discriminating doses (DCs) following FAO suggestion. For mortality by AIT, LIT and LPT the DCs were estimated: 4.98 ppm, 7.64 ppm and 2365.8 ppm, respectively, for Mozo strain. DCs mortality values estimated for resistant strain by AIT, LIT and LPT were: 6.96 x 10(5) ppm, 343.26 ppm and 5.7 x 10(3) ppm, respectively and their respective resistant factors were: 202.4, 5.36 and 1.52. Protocols for AIT, LIT and LPT have been presented in this paper. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fipronil is a phenylpyrazolic insecticide that is widely used in agriculture and has been recently used to control the cattle tick, Rhipicephalus (Boophilus) microplus. Because of the serious problems associated with resistance to the available acaricides, this product has been used as an important alternative to control acaricide-resistant ticks. The objective of this work was to analyse the fipronil sensitivity of ticks that were collected from farms with a history of fipronil use by larval bioassays. A total of 11 Brazilian tick populations were studied: one population from Rio Grande do Sul, one population from Mato Grosso do Sul and nine populations from Sao Paulo. To validate the assays, susceptible reference strains, POA (Porto Alegre, Brazil) and Mozo (Dilave, Uruguay), and ticks from six different farms that never used fipronil were tested. The resistance of various tick populations to technical grade fipronil (95.3%) was primarily evaluated using the larvae immersion test (LIT) and the larval packet test (LPT), when a sufficient number of larvae was collected. Using the LIT, the resistance ratios (RR(50)) of the tick populations from Rio Grande do Sul and Mato Grosso do Sul were 14.9 and 2.6, respectively, and the populations derived from Sao Paulo had RR(50)s ranging from 2.5 to 6.9. Four populations were evaluated with the LPT, and two populations displayed lower RR(50), while other populations displayed higher RR(50) than those determined by the LIT. This article reports the first cases of fipronil resistance in Brazil and highlights the LIT as a more sensitive technique for the evaluation of fipronil resistance in R. (B) microplus ticks. We suggest the use of the LIT as an evaluation tool for monitoring fipronil resistance in the control programmes of R. (B) microplus. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An apiary trial was conducted in 1997 in Sardinia, Italy, to verify the effectiveness of fluvalinate in polyvinyl chloride strips and flumethrin in polyethylene strips against Varroa jacobsoni Oudemans. Two indices to evaluate the efficacy of the treatments were adopted: percentage change in mite infestation of worker-sealed brood cells considering only treated hives and percentage change in mite mortality, and the natural variation in mite populations recorded in control hives during the trial. All acaricide treatments reduced the level of mite infestation of both sealed brood and adult bees. However, their effectiveness was slightly reduced in comparison to previous studies because of mite resistance phenomena. Portions of polyethylene strips of flumethrin from treated hives were sampled weekly to determine acaricide persistence using gas chromatography. After 4 wk, a slight reduction (approximate to9%) of the active ingredient content was observed, A laboratory bioassay also was performed to establish the resistance of adult female mites to fluvalinate, Mites were sampled from the experimental apiary and from various Sardinian apiaries which had primarily been subjected to fluvalinate applications in plastic strips or wood inserts for years. Mite resistance varied from 0 to 96%, depending on the acaricide management adopted, the lowest resistance level occurred in an apiary where pyrethroids had never been used, whereas the highest level occurred in an apiary with intensive use of fluvalinate in wood inserts.
Resumo:
Rhipicephalus sanguineus, commonly known as the brown dog tick, is one of the most widely distributed species of tick. In dogs, it can cause anemia and provide the transmission of pathogenic microorganisms such as Babesia canis, Ehrlichia canis, Hepatozoon canis, Anaplasma platys, and Mycoplasma haemocanis. To man, it can transmit the intracellular parasites Rickettsia rickettsii and Rickettsia conorii, the causative agents of the Rocky Mountain spotted fever in the Americas and Mediterranean and spotted fever in Europe and North Africa. Its control is performed by applying synthetic formulations composed of pyrethroids; however, continued use of these products results in environmental damage and acquisition of resistance. Alternatively, studies with botanical insecticides have been increasingly recurrent. Therefore, this study aimed to test the efficacy of essential oil of Tagetes patula, a ruderal species widely described in the literature for its insecticidal properties, in engorged females of R. sanguineus by the adults immersion test (AIT) and impregnated paper disk test (IPDT). The essential oil used, through gas chromatography coupled to mass spectrometry, revealed the presence of 55 compounds, being the 4-vinyl guaiacol and gamma terpinene the majority ones. The AIT compared to the IPDT was more efficient in inhibiting oviposition of tick; however, the eggs laid by the females submitted to saturated atmosphere with essential oil, from IPDT, not hatched, interrupted their development cycle. Besides being a pioneer work, the results presented here contributes to new researches, aiming the incorporation of essential oil in an acaricide for use in the environment. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The present study evaluated the efficacy of fluazuron (active ingredient of the acaricide Acatak®) and its effects on Rhipicephalus sanguineus nymphs fed on rabbits exposed to different doses of this insect growth regulator. Three different doses of fluazuron (20 mg/kg, 40 mg/kg, and 80 mg/kg) were applied on the back of hosts (via pour on), while distilled water was applied to the Control group. On the first day of treatment with fluazuron (24 h), hosts were artificially infested with R. sanguineus nymphs. Once fully engorged, nymphs were removed and placed in identified Petri dishes in Biochemical Oxygen Demand (BOD) incubator for 7 days. After this period, engorged nymphs were processed for ultramorphological analysis. The results revealed alterations in the ultramorphology of many chitinous structures (smaller hypostome and chelicerae, less sclerotized scutum, fewer sensilla, fewer pores, absence of grooves, marginal and cervical strips and festoons in the body, even the anal plaque was damaged) that play essential roles for the survivor of ticks and that can compromise the total or partial development of nymphs and emergence of adults after periodic molting. Our findings confirm the efficacy of fluazuron, a more specific and less aggressive chemical to the environment and human health, and that does not induce resistance, in nymphs of the tick R. sanguineus in artificially infested rabbits treated with this arthropod growth regulator (AGR), indicating that it could be used in the control of this stage of the biological cycle of the tick R. sanguineus. © 2013 Wiley Periodicals, Inc.