999 resultados para 91-596


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical analyses of sediments from the top 24.5 m of Deep Sea Drilling Project hole 596 (23°51.20'S, 169°39.27'W) show great variability in the composition of pelagic clays accumulated in the South Pacific since the late Cretaceous. Elemental associations indicate that most of this variability can be attributed to variations in abundances of six sediment end-member components: detrital (eolian), andesitic (volcanic), hydrothermal, hydrogenous, phosphate (fish debris), and biogenic silica. We develop a sedimentation model which is used to infer processes that might have influenced the accumulation rates of these components over the last 85 million years. The accumulation of eolian detritus in the South Pacific shows some similarities to that observed in the North Pacific and has been largely controlled by global climate trends in the Cenozoic. Much of the variation in the accumulation of other sediment components likely reflects the paleoceanographic evolution of the South Pacific. The most notable change in the sedimentary environment occurred at about the Paleogene/Neogene boundary. At that time, significant changes in the color, mineralogy, and chemistry of the sediment probably reflect major shifts in climate mode as well as oceanic circulation in the central South Pacific region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seventy meters of Cenozoic and Mesozoic pelagic clay cored at DSDP Sites 595 and 596 provide the basis for a preliminary analysis of ichthyolith biostratigraphy in the southwest Pacific. A most likely order of the more reliable ichthyolith events is compared with a synthesis of ichthyolith biostratigraphy in the North Pacific and with dated composite ranges. The resultant preliminary ichthyolith stratigraphy suggests that the Cenozoic is represented by the upper 20 m at Site 596 and 16 to 22 m at Site 595. Mixing of taxa precludes a clear recognition of the Cretaceous/Tertiary boundary at Site 595. The occurrence of 13 newly described subtypes is recorded in Mesozoic sediments at Sites 595 and 596. These new subtypes and previously described Mesozoic forms may be useful for recognizing Mesozoic subdivisions when their occurrences in sequences dated by other microfossils are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subducted sediments play an important role in arc magmatism and crust-mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions. We then use these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust. The large variations in the chemical composition of marine sediments are for the most part linked to the main lithological constituents. The alkali elements (K, Rb and Cs) and high field strength elements (Ti, Nb, Hf, Zr) are closely linked to the detrital phase in marine sediments; Th is largely detrital but may be enriched in the hydrogenous Fe-Mn component of sediments; REE patterns are largely continental, but abundances are closely linked to fish debris phosphate; U is mostly detrital, but also dependent on the supply and burial rate of organic matter; Ba is linked to both biogenic barite and hydrothermal components; Sr is linked to carbonate phases. Thus, the important geochemical tracers follow the lithology of the sediments. Sediment lithologies are controlled in turn by a small number of factors: proximity of detrital sources (volcanic and continental); biological productivity and preservation of carbonate and opal; and sedimentation rate. Because of the link with lithology and the wealth of lithological data routinely collected for ODP and DSDP drill cores, bulk geochemical averages can be calculated to better than 30% for most elements from fewer than ten chemical analyses for a typical drill core (100-1000 m). Combining the geochemical systematics with convergence rate and other parameters permits calculation of regional compositional fluxes for subducting sediment. These regional fluxes can be compared to the compositions of arc volcanics to asses the importance of sediment subduction to arc volcanism. For the 70% of the trenches worldwide where estimates can be made, the regional fluxes also provide the basis for a global subducting sediment (GLOSS) composition and flux. GLOSS is dominated by terrigenous material (76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H2O+), and therefore similar to upper continental crust (UCC) in composition. Exceptions include enrichment in Ba, Mn and the middle and heavy REE, and depletions in detrital elements diluted by biogenic material (alkalis, Th, Zr, Hf). Sr and Pb are identical in GLOSS and UCC as a result of a balance between dilution and enrichment by marine phases. GLOSS and the systematics of marine sediments provide an independent approach to the composition of the upper continental crust for detrital elements. Significant discrepancies of up to a factor of two exist between the marine sediment data and current upper crustal estimates for Cs, Nb, Ta and Ti. Suggested revisions to UCC include Cs (7.3 ppm), Nb (13.7 ppm), Ta (0.96 ppm) and TiO2 (0.76 wt%). These revisions affect recent bulk continental crust estimates for La/Nb and U/Nb, and lead to an even greater contrast between the continents and mantle for these important trace element ratios. GLOSS and the regional sediment data also provide new insights into the mantle sources of oceanic basalts. The classical geochemical distinction between 'pelagic' and 'terrigenous' sediment sources is not valid and needs to be replaced by a more comprehensive understanding of the compositional variations in complete sedimentary columns. In addition, isotopic arguments based on surface sediments alone can lead to erroneous conclusions. Specifically, the Nd/Hf ratio of GLOSS relaxes considerably the severe constraints on the amount of sediment recycling into the mantle based on earlier estimates from surface sediment compositions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally, we had planned to piston core at Site 595 in order to meet the sedimentologic and biostratigraphic objectives outlined in the introductory chapter. However, consultation with our colleagues, Thomas Jordan and John Orcutt on board Melville, indicated that coring near the ocean bottom seismometer (OBS) array around Hole 595B could alter the programmed signal to noise ratio above which teleseisms trigger recording in the OBSs. They requested that we core no closer than about 8 km from three OBSs nearest Hole 595B, and selected a target for us about that distance to the west. Since a new beacon was required at this distance, a new site number, 596, was designated. Briefly, we planned to obtain oriented hydraulic piston cores to the top of the cherts, then core through the cherts using the extended core barrel (XCB) to basement. With improved recovery, we hoped to reach the sediment/basalt contact, and thus obtain a reliable biostratigraphic determination of the basement age. We planned to obtain at least one core in basement, perhaps more, with time permitting. We planned no geophysical program for the hole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New data on Ru/Ir abundance ratios are presented for nonmarine (Hell Creek, Montana; Frenchman River, Saskatchewan) and marine Cretaceous-Tertiary boundary sites (Brazos River, Texas; Beloc, Haiti; DSDP 577 and DSDP 596). The Ru/Ir ratio varies from 0.5 to 1 within 4000 km of Chicxulub and increases to 2-3 at paleodistances (65 Ma) of up to 12,000 km from the impact site. For CI chondrites, Ru/Ir = 1.5. A ballistic model of ejecta cloud cooling and expansion, which employs the available vapor-pressure versus temperature data for Ru and It, predicts qualitatively similar global variation in the Ru/Ir ratio but by only a factor of 1.5. We infer that several other factors, such as remobilization of PGE during diagenesis, preferential oxidation of Ru, condensation kinetics and atmospheric chemical and circulation processes, may account for the observed larger Ru/Ir variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have found trace inclusions of Ni-rich magnesiowüstite within grains of magnesioferrite spinel recovered from Cretaceous/Tertiary boundary sediments from DSDP Site 596, South Pacific (23°51.20'S, 169°39.27'W) and DSDP Site 577, North Pacific (3°6.51'N, 157°43.40'E). Measured compositions of these inclusions range from (Mg_0.85Ni_0.74Fe_0.17)O to (Mg_0.74Ni_0.09Fe_0.17)O. Coexisting magnesioferrite and magnesiowüstite can only crystallize from ultramafic, refractory, Mg-rich liquids with Mg/Si > 2 (atom ratio). Such liquid compositions cannot form as a result of fractional crystallization and are unknown to occur as a result of terrestrial igneous processes or meteoroid ablation. We infer that these minerals crystallized from liquid droplets that equilibrated with silicate vapor at high temperatures (probably >2300°C), resulting in fractionation of volatile SiO2 from more refractory MgO. The most plausible source of this high-temperature vapor is in the fireball of the major impact event that terminated the Cretaceous.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: