998 resultados para 85-572B
Resumo:
The concentration changes in pore waters of dissolved calcium, magnesium, sulfate, strontium, and silica and of alkalinity are controlled by diagenetic reactions occurring within the biogenic sediments of DSDP Sites 572, 573, and 574. Downcore increases in dissolved Sr2 + indicate recrystallization of calcite, and increases in dissolved SiO2 reflect dissolution of amorphous silica. Minor gradients in dissolved Ca(2+) and Mg(2+) suggest little if any influence from reactions involving volcanic sediments or basalt. Differences in interstitial water profiles showing the downhole trends of these chemical species mark variations in carbonate and silica diagenesis, sediment compositions, and sedimentation rate histories among the sites. The location and extent of carbonate diagenesis in these sediments are determined from Sr/Ca distributions between the interstitial waters and the bulk carbonate samples. Pore water strontium increases in the upper 100 to 250 m of sediment are assumed to reflect diffusion from underlying zones where calcite recrystallization has occurred. On the basis of calculations of dissolved strontium production and comparisons between observed and calculated "equilibrium" Sr/Ca ratios of the solids, approximately 30 to 50% of the carbonate has recrystallized in these deeper intervals. These estimates agree with the observed amounts of chalk at these sites. Variations in Sr/Ca ratios of these carbonates reflect differences in calcareous microfossil content, in diagenetic history, and, possibly, in changes in seawater Sr/Ca with time. Samples of porcelanite recovered below 300 m at Site 572 suggest formation at temperatures 20 to 30° C greater than ones estimated assuming oceanic geothermal gradients from sedimentary sections similar to those recovered on Leg 85. The higher temperatures may partially account for higher Sr/Ca ratios determined for recrystallized carbonates from this site.
Resumo:
Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.
Resumo:
Granular alloys of Cu with FeCo were prepared by the melt-spinning technique. The alloy was characterized by x-ray, transmission electron microscopy, vibrating sample magnetometer, and magnetoresistance measurements. The alloys were heat treated for different temperatures to optimize the magnetoresistance properties. Structural characterization reveals that the FeCo phase initially precipitates out as fcc and later transforms to the bcc structure by martensitic transformation. It is seen that the trend in the magnetoresistance properties is different for the measurements carried out at room temperature and 4.2 K. This has been attributed to the transformation of fine fcc precipitates to the bcc structure during the low temperature measurements. It is seen that the presence of fine particles causes an increase in the field for saturation and is not suitable for applications where moderate field giant magnetoresistance is required. (C) 1999 American Institute of Physics. [S0021-8979(99)08317-6].
Resumo:
We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.