985 resultados para 641, CAST
Resumo:
As part of the large-scale, interdisciplinary deep-sea study "BIGSET", the relationship between the monsoon-induced regional and temporal variability of POC deposition and the small-sized benthic community was investigated at several sites 2316-4420 m deep in the Arabian Sea during four cruises between 1995 and 1998. Vertical and horizontal distribution patterns of chloroplastic pigments (a measure of phytodetritus deposition), readily soluble protein and activity, and biomass parameters of the small-sized benthic community (Electron Transport System Activity (ETSA); bacterial ectoenzymatic activity (FDA turnover) and DNA concentrations) were measured concurrently with the vertical fluxes of POC and chloroplastic pigments. Sediment chlorophyll a (chl. a) profiles were used to calculate chl. a flux rates and to estimate POC flux across the sediment water interface using two different transport reaction models. These estimates were compared with corresponding flux rates determined in sediment traps. Regional variability of primary productivity and POC deposition at the deep-sea floor creates a trophic gradient in the Arabian Basin from the NW to the SE, which is primarily related to the activity of monsoon winds and processes associated with the topography of the Arabian Basin and the vicinity of land masses. Inventories of sediment chloroplastic pigments closely corresponded to this trophic gradient. For ETSA, FDA and DNA, however, no clear coupling was found, although stations WAST (western Arabian Sea) and NAST (northern Arabian Sea) were characterised by high concentrations and activities. These parameters exhibited high spatial and temporal variability, making it impossible to recognise clear mechanisms controlling temporal and spatial community patterns of the small-sized benthic biota. Nevertheless, the entire Arabian Basin was recognised as being affected by monsoonal activity. Comparison of two different transport reaction models indicates that labile chl. a buried in deeper sediment layers may escape rapid degradation in Arabian deep-sea sediments.
Resumo:
In order to evaluate bioturbation in abyssal Arabian-Sea sediments of the Indus fan profiles of 210Pb (half-life: 22.3 yr) and 234Th (half-life: 24.1 d) were measured in cores collected during September and October 1995 and April 1997, respectively. The density and composition of epibenthic megafauna and lebensspuren were determined in vertical seafloor photographs during April 1997. Mean eddy-diffusive mixing coefficients according to the distribution of excess 210Pb ( 210Pb-DB) were 0.072±0.028, 0.068±0.055, 0.373±0.119, 0.037±0.009 and 0.079±0.119 cm**2 yr**-1 in the northern, western, central, eastern and southern abyssal Arabian sea, respectively. Mean eddy-diffusive mixing coefficients according to the distribution of excess 234Th (234Th-DB) were 0.53, 1.64 and 0.47 cm**2 yr**-1 in the northern, western and central abyssal Arabian Sea, respectively. Mobile epibenthic megafauna at the western, northern, central and southern study sites were dominated by ophiuroids, holothurians, ophiuroids and natant decapods (the respective densities were 100, 82, 29 and 6 individuals 1000 m**-2). The northern study site was characterized by a high abundance of spoke traces and fecal casts. The central site showed spoke traces and many tracks. The southern site displayed the highest abundance of spoke traces, whereas at the western site hardly any lebensspuren were observed. There is evidence for at least two functional endmember communities in the Arabian Sea. In the northwestern Arabian Sea (WAST) vertical particle displacement seems to be dominated by macrofauna and primarily eddy-diffusive. In the southern Arabian Sea (SAST) non-local and 'incidental' mixing due to spoke-trace producers might become more important and superimpose reduced eddy-diffusive mixing. With respect to biological data CAST is an intermediate location. Given the biological data, average 210Pb-DB is higher and decimeter-scale variability of 210Pb-DB smaller at CAST than expected. These findings indicate that in a mixture of both endmember communities the organisms may interact in way that increases values of biodiffusivity, as reflected by 210Pb-DB, and reduces decimeter-scale 210Pb-DB heterogeneity in comparison to the simple sum of the isolated effects of the endmembers. For time scales <100 years there was no evidence for a relationship between food supply (POC flux) and bioturbation intensity, as reflected by 210Pb-DB and 234Th-DB. Bioturbation intensity should be controlled primarily by the composition of the benthic fauna, its specific adaptation to the environmental setting, and the abundance of each species of the benthic community. Food supply can have only an indirect influence on bioturbation intensity. In certain parts of the ocean the a priori overall positive relationship between POC flux and biodiffusivity might include restricted intervals displaying no or even negative relations.
Resumo:
A proper cast is essential for a successful rehabilitation with implant prostheses, in order to produce better structures and induce less strain on the implants. The aim of this study was to evaluate the precision of four different mold filling techniques and verify an accurate methodology to evaluate these techniques. A total of 40 casts were obtained from a metallic matrix simulating three unit implant-retained prostheses. The molds were filled using four different techniques in four groups (n = 10): Group 1 - Single-portion filling technique; Group 2 - Two-step filling technique; Group 3 - Latex cylinder technique; Group 4 - Joining the implant analogs previously to the mold filling. A titanium framework was obtained and used as a reference to evaluate the marginal misfit and tension forces in each cast. Vertical misfit was measured with an optical microscope with an increase of 120 times following the single-screw test protocol. Strain was quantified using strain gauges. Data were analyzed using one-way ANOVA (Tukey's test) (α =0.05). The correlation between strain and vertical misfit was evaluated by Pearson test. The misfit values did not present statistical difference (P = 0.979), while the strain results showed statistical difference between Groups 3 and 4 (P = 0.027). The splinting technique was considered to be as efficient as the conventional technique. The strain gauge methodology was accurate for strain measurements and cast distortion evaluation. There was no correlation between strain and marginal misfit.
Resumo:
OBJECTIVES: The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. MATERIAL AND METHODS: Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey's post-hoc test (p<0.05). RESULTS: Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. CONCLUSIONS: The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface.
Resumo:
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
The purpose of this work was to experimentally investigate the thermal diffusivity of four different gray cast iron alloys, regularly used to produce brake disks for automotive vehicles. Thermal diffusivity measurements were performed at temperatures ranging from room temperature to 600 A degrees C. The influence of the thermal conductivity on the thermomechanical fatigue life is also briefly presented. The measurements were sensitive to the influence of the carbon equivalent and alloying elements, such as molybdenum, copper and chromium. Molybdenum, unlike copper, lowered the thermal diffusivity of the gray cast iron, and alloy E (without molybdenum), besides presenting a relatively low carbon equivalent content and an increase in the values of the thermal diffusivity, presented the best performance during the thermomechanical fatigue. The molybdenum present in alloys B and C did not fulfill the expectations of providing the best thermomechanical fatigue behavior. Consequently, its elimination in the gray cast iron alloy for this application will result in a significant economy.
Resumo:
Tool wear is a very important subject affecting the economics of machining, especially in tapping, since it is one of the last operations to be performed within most operation sequences. In the present study, some aspects of tapping such as the mechanisms and types of wear were investigated in taps working at conventional and high-speed cutting (HSC). Additionally, different types of coatings and cooling /lubrication conditions were used. The tapping operation (M8 x 1.25) was performed in through holes with two cutting speeds (30 and 60 m/min) in grey cast iron GG25. Lubrication conditions tested were dry and with minimal quantity of lubricant. Tap materials were manufactured by powder metallurgy and coated with (TiAl)N and with TiCN. A go-non-go gauge criterion was used to assess tool life. The wear and surface aspects of the tools and workpiece were evaluated by scanning electron microscopy and energy dissipation spectroscopy. Torque signals were also measured during the tests. The main wear mechanism observed was adhesion, although some abrasion and diffusion may also have occurred, and the main type of wear was flank wear. The adhesion of workpiece material on the tool was the main and decisive factor ending tool life. Tool coatings proved to be an efficient way to minimize adhesion. Torque signals followed the same pattern as the flank wear and no significant change was observed when the cutting speed was increased.
Resumo:
Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 A degrees C and at room temperature were used to apply coatings with 200 and 400 mu m nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 mu m and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 +/- A 4 MPa.
Resumo:
We examined whether single-nucleotide polymorphisms (SNPs) in the calpain (CAPN) and calpastatin (CAST) genes, described from Bos primigenius taurus, are polymorphic in Nellore cattle. We also looked for a possible association of linkage disequilibrium of this polymorphism with tenderness of the longissimus dorsi muscle after 7, 14 and 21 days of postmortem aging in 638 purebred Nellore bulls. Meat tenderness was measured as Warner-Bratzler shear force. Additive and dominance effects were tested for SNPs of the three genotypic classes; the substitution effect was tested for SNPs with missing genotypic classes. Genotypic and gene frequencies were also calculated for the different SNPs. An increase in tenderness was observed from 7 to 21 days; the average values for shear force at 7, 14 and 21 days of aging were 5.92 +/- 0.06, 4.92 +/- 0.05, and 4.38 +/- 0.04 kg, respectively. All markers showed polymorphism, but there was no CC genotype for CAPN316, and few animals showed the AA genotype for CAPN530. The alleles CAPN4751, UOGCAST1, and WSUCAST were found to have additive and dominance effects for shear force at 7, 14 and 21 days, while CAPN316 showed a substitution effect for shear force at 7 and 21 days. An additive-by-additive epistatic interaction was observed between CAPN4751 and markers on the CAST gene. In conclusion, these markers should be considered for use in breeding programs.
Production, microstructural characterization and mechanical properties of as-cast Ti-10Mo-xNb alloys
Resumo:
Beta titanium (Ti) alloys are one of the most promising groups of Ti alloys for biomedical applications. This work presents the production, microstructural characterization, and mechanical properties of as-cast Ti-10Mo-xNb (x = 0, 3, 6, 9, 20, and 30) alloys. They were produced via arc melting and characterized by scanning electron microscopy and X-ray diffraction. The density of each alloy was measured by the Archimedes method and the mechanical characterization was carried out by using the Vickers microhardness test and Young`s modulus measurements. The results show a near beta microstructure for niobium (Nb) contents lower or equal to 9 wt% while beta single-phase microstructure was obtained for higher Nb additions. The microhardness values decreased with the increase of Nb content in the alloys. The elastic modulus values of Ti-10Mo-3Nb and Ti-10Mo-20Nb alloys were lower than those of cp Ti and Ti-6Al-4V.