967 resultados para 640399 Other


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of carbonaceous adsorbents were prepared by carbonisation at 600 degrees C following acidic oxidation under various conditions. Effects of the chemical nature of the precursor, such as the ratio of aromatic to aliphatic carbons and oxygen content, on the chemical and structural characteristics of the resultant chars were investigated using C-13 NMR and Raman spectroscopy, respectively. The C-13 NMR spectral parameters of the coal samples show that as the severity of oxidation conditions increased, the ratio of aromatic to aliphatic carbons increased. Furthermore, it was also found that the amount of disorganised carbon affects both the pore structure and the adsorption properties of carbonaceous adsorbents. It is demonstrated that higher amount of the disorganised carbon indicates smaller micropore size. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental work has been carried out to investigate the effect of major operating variables on milling efficiency of calcium carbonate in laboratory and pilot size Tower and Sala Agitated (SAM) mills. The results suggest that the stirrer speed, media size and slurry density affect the specific energy consumption required to achieve the given product size. Media stress intensity analysis developed for high-speed horizontal mills was modified to include the effect of gravitational force in the vertical stirred mills such as the Tower and SAM units. The results suggest that this approach can be successfully applied for both mill types. For a given specific energy input, an optimum stress intensity range existed, for which the finest product was achieved. Finer product and therefore higher milling efficiency was obtained with SAM in the range of operating conditions tested. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The South African style SAG (RoM) mills operate in a window that is almost exclusive from the operation of the Australian and North American mills that have been used for the development of SAG mill models. Combining good quality, test data from the RoM mills is extending and improving these models, and assisting in a practical manner in improving our understanding of SAG/AG milling. Data from high mill loads, both in absolute filling and ball loading, have been used to extend and improve the JK SAG mill model. This improved understanding has been successfully applied to increasing the throughput of a mill by 8%. Data is presented on relationships between power and load for high mill loading. Slurry pooling is common in closed-circuit RoM mills, and the detrimental effect of this has been dramatically demonstrated at ALCOA with a mill throughput increase of over 20%. Techniques for calculating the effects of slurry pooling have been developed and a new pulp lifter system designed to give optimal slurry discharge. The influence of mill speed in shifting the product size distribution has also been measured. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper discusses the design and characterisation of a short, and hence portable impact load cell for in-situ quantification of ore breakage properties under impact loading conditions. Much literature has been published in the past two decades about impact load cells for ore breakage testing. It has been conclusively shown that such machines yield significant quantitative energy-fragmentation information about industrial ores. However, documented load cells are all laboratory systems that are not adapted for in-situ testing due to their dimensions and operating requirements. The authors report on a new portable impact load cell designed specifically for in-situ testing. The load cell is 1.5 m in height and weighs 30 kg. Its physical and operating characteristics are detailed in the paper. This includes physical dimensions, calibration and signal deconvolution. Emphasis is placed on the deconvolution issue, which is significant for such a short load cell. Finally, it is conclusively shown that the short load cell is quantitatively as accurate as its larger laboratory analogues. (C) 2062 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To determine the effect of slurry rheology on industrial grinding performance, 45 surveys were conducted on 16 full-scale grinding mills in five sites. Four operating variables - mill throughput, slurry density, slurry viscosity and feed fines content-were investigated. The rheology of the mill discharge slurries was measured either on-line or off-line, and the data were processed using a standard procedure to obtain a full range of flow curves. Multi-linear regression was employed as a statistical analysis tool to determine whether or not rheological effects exert an influence on industrial grinding, and to assess the influence of the four mill operating conditions on mill performance in terms of the Grinding Index, a criterion describing the overall breakage of particles across the mill. The results show that slurry rheology does influence industrial grinding. The trends of these effects on Grinding Index depend upon the rheological nature of the slurry-whether the slurries are dilatant or pseudoplastic, and whether they exhibit a high or low yield stress. The interpretation of the regression results is discussed, the observed effects are summarised, and the potential for incorporating rheological principles into process control is considered, Guidelines are established to improve industrial grinding operations based on knowledge of the rheological effects. This study confirms some trends in the effect of slurry rheology on grinding reported in the literature, and extends these to a broader understanding of the relationship between slurry properties and rheology, and their effects on industrial milling performance. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crushing and grinding are the most energy intensive part of the mineral recovery process. A major part of rock size reduction occurs in tumbling mills. Empirical models for the power draw of tumbling mills do not consider the effect of lifters. Discrete element modelling was used to investigate the effect of lifter condition on the power draw of tumbling mill. Results obtained with PFC3D code show that lifter condition will have a significant influence on the power draw and on the mode of energy consumption in the mill. Relatively high lifters will consume less power than low lifters, under otherwise identical conditions. The fraction of the power that will be consumed as friction will increase as the height of the lifters decreases. This will result in less power being used for high intensity comminution caused by the impacts. The fraction of the power that will be used to overcome frictional resistance is determined by the material's coefficient of friction. Based on the modelled results, it appears that the effective coefficient of friction for in situ mill is close to 0.1. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The PFC3D (particle flow code) that models the movement and interaction of particles by the DEM techniques was employed to simulate the particle movement and to calculate the velocity and energy distribution of collision in two types of impact crusher: the Canica vertical shaft crusher and the BJD horizontal shaft swing hammer mill. The distribution of collision energies was then converted into a product size distribution for a particular ore type using JKMRC impact breakage test data. Experimental data of the Canica VSI crusher treating quarry and the BJD hammer mill treating coal were used to verify the DEM simulation results. Upon the DEM procedures being validated, a detailed simulation study was conducted to investigate the effects of the machine design and operational conditions on velocity and energy distributions of collision inside the milling chamber and on the particle breakage behaviour. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Base metal resources are becoming more fine-grained and refractory and minerals separation processes require these ores to be milled to increasingly finer sizes. To cope with very fine grinding to below a P-80 of approximately 15 mum stirred milling technology has been adopted from other industries Neither this technology, nor the basic concepts of fine grinding, are well understood by the minerals processing industry. Laboratory studies were therefore carried out in order to investigate fine milling using different types of stirred mills. The variables analysed were stirrer speed, grinding media type and size, slurry solids content as well as the feed and product size. The results of the testwork have shown that all of these variables affect the grinding efficiency. The ratio of media size to material size was found to be of particular significance. The results were also analysed using the stress intensity approach and the optimum stress intensity ranges for the most efficient grinding were determined. Application of the results for process optimisation in the industrial size units is also discussed in this paper. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In spite of their wide application in comminution circuits, hydrocyclones have at least one significant disadvantage in that their operation inherently tends to return the fine denser liberated minerals to the grinding mill. This results in unnecessary overgrinding which adds to the milling cost and can adversely affect the efficiency of downstream processes. In an attempt to solve this problem, a three-product cyclone has been developed at the Julius Kruttschnitt Mineral Research Centre (JKMRC) to generate a second overflow in which the fine dense liberated minerals can be selectively concentrated for further treatment. In this paper, the design and operation of the three-product cyclone are described. The influence of the length of the second vortex finder on the performance of a 150-mm unit treating a mixture of magnetite and silica is investigated. Conventional cyclone tests were also conducted under similar conditions. Using the operational performance data of the three-product and conventional cyclones, it is shown that by optimising the length of the second vortex finder, the amount of fine dense mineral particles that reports to the three-product cyclone underflow can be reduced. In addition, the three-product cyclone can be used to generate middlings stream that may be more suitable for flash flotation than the conventional cyclone underflow, or alternatively, could be classified with a microscreen to separate the valuables from the gangue. At the same time, a fines stream having similar properties to those of the conventional overflow can be obtained. Hence, if the middlings stream was used as feed for flash flotation or microscreening, the fines stream could be used in lieu of the conventional overflow without compromising the feed requirements for the conventional flotation circuit. Some of the other potential applications of the new cyclone are described. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A literature review has highlighted the need to measure flotation froth rheology in order to fully characterise the role of the froth in the flotation process. The initial investigation using a coaxial cylinder viscometer for froth rheology measurement led to the development of a new device employing a vane measuring head. The modified rheometer was used in industrial scale flotation tests at Mt. Isa Copper Concentrator. The measured froth rheograms show a non-Newtonian nature for the flotation froths (pseudoplastic flow). The evidence of the non-Newtonian flow has questioned the validity of application of the Laplace equation in froth motion modelling as used by a number of researchers, since the assumption of irrotational flow is violated. Correlations between the froth rheology and the froth retention time, water hold-up in the froth and concentrate grades have been found. These correlations are independent of air flow rate (test data at various air flow rates fall on one similar trend line). This implies that froth rheology may be used as a lumped parameter for other operating variables in flotation modelling and scale up. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pulp lifters, also known, as pan lifters are an integral part of the majority of autogenous (AG), semi-autogenous (SAG) and grate discharge ball mills. The performance of the pulp lifters in conjunction with grate design determines the ultimate flow capacity of these mills. Although the function of the pulp lifters is simply to transport the slurry passed through the discharge grate into the discharge trunnion, their performance depends on their design as well as that of the grate and operating conditions such as mill speed and charge level. However, little or no work has been reported on the performance of grate-pulp lifter assemblies and in particular the influence of pulp lifter design on slurry transport. Ideally, the discharge rate through a grate-pulp lifter assembly should be equal to the discharge rate through at a given mill hold-up. However, the results obtained have shown that conventional pulp lifter designs cause considerable restrictions to flow resulting in reduced flow capacity. In this second of a two-part series of papers the performance of conventional pulp lifters (radial and spiral designs) is described and is based on extensive test work carried out in a I m diameter pilot SAG mill. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discharge grates play an important role in determining the performance of autogenous, semi-autogenous and grate discharge ball mills. The flow capacity (grinding capacity) of these mills is strongly influenced by the discharge grate design-open area and position of apertures, as well as the performance of the pulp lifters. As mill sizes have progressively increased and closed-circuiting has become more popular the importance of grate and pulp lifter design has grown. Unfortunately very few studies have concentrated on this aspect of mill performance. To remedy this a series of laboratory and pilot-scale tests were undertaken to study both the performance of grates on their own and in conjunction with pulp lifters. In this first paper of a two-part series the results from the grate-only experiments are presented and discussed, whilst the performance of the grate-pulp-lifter system is covered in the second paper. The results from the grate-only experiments have shown that the build-up of slurry (hold-up) inside the mill starts from the shoulder of the charge, while the toe position of the slurry progressively moves towards the toe of the charge with increasing flowrate. Besides grate design (open area and position of apertures), charge volume and mill speed were also found to have a strong influence on mill hold-up and interact with grate design variables. (C) 2003 Elsevier Science Ltd. All rights reserved.