973 resultados para 5-Fluorouracil
Resumo:
Background: Hydroxyurea (HU), an inhibitor of ribonucleotide reductase, may potentiate the activity of 5-fluorouracil (5-FU) and folinic acid (FA) by reducing the deoxyribonucleotide pool available for DNA synthesis and repair. However as HU may inhibit the formation of 5-fluoro-2-deoxyuridine-5- monophosphate (FdUMP), one of the principal active metabolites of 5-FU, the scheduling of HU may be critical. In vitro experiments suggest that administration of HU following 5-FU, maintaining the concentration in the region of I mM for six or more hours, significantly enhances the efficacy of 5-FU. Patients and methods: 5-FU/FA was given as follows: days 1 and 2 - FA 250 mg/m 2 (max. 350 mg) over two hours followed by 5-FU 400 mg/m 2 by intravenous bolus (ivb) over 15 minutes and subsequently 5-FU 400 mg/m 2 infusion (ivi) over 22 hours. HU was administered on day 3 immediately after the 5-FU with 3 g ivb over 15 minutes followed by 12 g ivi over 12 hours. Results: Thirty patients were entered into the study. Median survival was nine months (range 1-51 + months). There were eight partial responses (28%, 95% CI: 13%-47%). The median duration of response was 6.5 (range 4-9 months). Grade 3-4 toxicities included neutropenia (grade 3 in eight patients and grade 4 in five), anaemia (grade 3 in one patient) and diarrhoea (grade 3 in two patients). Neutropenia was associated with pyrexia in two patients. Phlebitis at the infusion site occurred in five patients. The treatment was complicated by pulmonary embolism in one patient and deep venous thrombosis in another. Conclusion: HU administered in this schedule is well tolerated. Based on these results and those of other phase II studies, a randomised phase III study of 5-FU, FA and HU versus 5-FU and FA using the standard de Gramont schedule is recommended.
Resumo:
Objective To evaluate the efficacy and toxicity of Oxaliplatin and 5-Fluorouracil (5-FU)/Leucovorin (LV) combination in ovarian cancer relapsing within 2 years of prior platinum-based chemotherapy in a phase II trial. Methods Eligible patients had at least one prior platinum-based chemotherapy regimen, elevated CA-125 ≥ 60 IU/l, radiological evidence of disease progression and adequate hepatic, renal and bone marrow function. Patients with raised CA-125 levels alone as marker of disease relapse were not eligible. Oxaliplatin (85 mg/m 2) was given on day 1, and 5-Fluorouracil (370 mg/m 2) and Leucovorin (30 mg) was given on days 1 and 8 of a 14-day cycle. Results Twenty-seven patients were enrolled. The median age was 57 years (range 42-74 years). The median platinum-free interval (PFI) was 5 months (range 0-17 months) with only 30% of patients being platinum sensitive (PFI > 6 months). Six patients (22%) had two prior regimens of chemotherapy. A total of 191 cycles were administered (median 7; range 2-12). All patients were evaluable for toxicity. The following grade 3/4 toxicities were noted: anemia 4%; neutropenia 15%; thrombocytopenia 11%; neurotoxicity 8%; lethargy 4%; diarrhea 4%; hypokalemia 11%; hypomagnesemia 11%. Among 27 enrolled patients, 20 patients were evaluable for response by WHO criteria and 25 patients were evaluable by Rustin's CA-125 criteria. The overall response rate (RR) by WHO criteria was 30% (95% CI: 15- 52) [three complete responses (CRs) and three partial responses (PRs)]. The CA-125 response rate was 56% (95% CI: 37-73). Significantly, a 25% (95% CI: 9-53) radiological and a 50% (95% CI: 28-72) CA-125 response rate were noted in platinum resistant patients (PFI < 6 months). The median response duration was 4 months (range 3-12) and the median overall survival was 10 months. Conclusion Oxaliplatin and 5-Fluorouracil/ Leucovorin combination has a good safety profile and is active in platinum-pretreated advanced epithelial ovarian cancer. © 2004 Elsevier Inc. All rights reserved.
Resumo:
5-Fluorouracil (5-FU) is one of the most widely used drugs for treatment of cancers, including breast cancer that exhibits its anticancer activity by inhibiting DNA synthesis and also incorporated into DNA and RNA. The objective of this investigation was to find out the total nucleotide metabolism genes regulated by 5-FU in breast cancer cell line. The breast cancer cell line MCF-7 was treated with the drug 5-FU. To analyze the expression of genes, we have conducted the experiment using 1.7k and 19k human microarray slide and confirmed the expression of genes by semiquantitative reverse transcription-polymerase chain reaction. The expression of 44 genes involved in the nucleotide metabolism pathway was quantified. Of these 44 genes analyzed, transcription of 6 genes were upregulated and 9 genes were downregulated. Earlier studies revealed that the transcription of genes for key enzymes like thymidylate synthase, thymidinekinase, and dihydropyrimidine dehydrogenase are regulated by 5-FU. This study identified some novel genes like thioredoxin reductase, ectonucleotide triphosphate dephosphorylase, and CTP synthase are regulated by 5-FU. The data also reveal large-scale perturbation in transcription of genes not involved directly in the known mechanism of action of 5-FU.
Resumo:
5-Fluorouracil (5FU), an analogue of uracil, was found to inhibit the production of infectious particles of rinderpest virus (RPV) in Vero cells (African green monkey kidney cells) by 99%, at a concentration of 1 μg/ml. The levels of individual mRNA specific for five of the virus genes were also reduced drastically, while the level of mRNA for a cellular housekeeping gene—glyceraldehyde-3-phosphate dehydrogenase (GAPDH)—was unaltered by fluorouracil treatment of infected cells. Both virus RNA and protein synthesis showed inhibition in a dose-dependent manner. The virions which budded out of 5-fluorouracil-treated cells also contained reduced amounts of virus proteins compared with virus particles from untreated cells.
Resumo:
5-fluorouracil (FUra) has been shown to modulate the aminoacylation function of rat liver tRNA. The present study was aimed at studying the structure-function relationship of FUra-substituted tRNA. Male Wistar rats (2-3 month old) were given a single i.p. injection of FUra at 50, 250, or 500 mg/kg body wt. and FUra-substituted total liver tRNA, i.e. tRNA(FUra50, 250, and 500, respectively, were isolated 3 h later. Normal tRNA (tRNA(N)) was isolated from saline-treated control rats. Thermal denaturation studies showed higher melting temperatures for tRNA(FUra) compared to tRNA(N). Heat denaturation followed by renaturation of total tRNA did not affect the activity of tRNA(N) and tRNA(FUra50), where as tRNA(FUra250 and 500) lost 35% and 72% of activity, respectively, compared to the corresponding group of non-denatured tRNA. Antibodies specific to rat liver tRNA recognized normal and FUra-substituted tRNA in the order of tRNA(N) > tRNA(FUra50) > or = tRNA(FUra250) > tRNA(FUra500) in an avidin-biotin micro-enzyme linked immunosorbant assay. tRNA(N) or tRNA(FUra50) preincubated with tRNA antiserum showed 74% and 59% of aminoacylation activity, respectively, compared to that of corresponding tRNA preincubated with normal rabbit IgG. However, activities of similarly treated tRNA(FUra250 and 500) were not affected. The observations of possible changes in the secondary structure of rat liver tRNA upon incorporation of FUra are discussed.
Resumo:
he ultrastructure of purified rinderpest virus and intracellular viral nucleocapsids from infected vero cells treated with a subtoxic dose of 5-fluorouracil (5-Fu) (1 mug/ml), has been analysed by transmission electron microscopy, and compared with that of normal virus particle and nucleocapsids. The results reveal dramatic alterations in the structure of both virions and nucleocapsids. The surface glycoprotein projection of virions was not seen or present at a much reduced level. The intracellular nucleocapsids showed pronounced structural changes,with respect to size, shape and fine structure. The length of treated nucleocapsids is much smaller as compared to the control. The central hollow core is missing in case of drug-treated nucleocapsid and the herring bone structure is replaced by a 'beads on string' structure. The presence of N protein, which is a major structural component of nucleocapsids was seen in 5-Fu-treated cells, but it was associated with a predominantly diffused form of nucleocapsids as seen by immunoelectron microscopy. We report here the first definitive and visual evidence of altered structure of virions and their nucleocapsids after 5-Fu treatment
Resumo:
Folate-targeted poly[(p-nitrophenyl acrylate)-co-(N-isopropylacrylamide)] nanohydrogel (F-SubMG) was loaded with 5-fluorouracil (5-FU) to obtain low (16.3 +/- 1.9 mu g 5-FU/mg F-SubMG) and high (46.8 +/- 3.8 mu g 5-FU/mg F-SubMG) load 5-FU-loaded F-SubMGs. The complete in vitro drug release took place in 8 h. The cytotoxicity of unloaded F-SubMGs in MCF7 and HeLa cells was low; although it increased for high F-SubMG concentration. The administration of 10 mu M 5-FU by 5-FU-loaded F-SubMGs was effective on both cellular types. Cell uptake of F-SubMGs took place in both cell types, but it was higher in HeLa cells because they are folate receptor positive. After subcutaneous administration (28 mg 5-FU/kg b.w.) in Wistar rats, F-SubMGs were detected at the site of injection under the skin. Histological studies indicated that the F-SubMGs were surrounded by connective tissue, without any signs of rejections, even 60 days after injection. Pharmacokinetic study showed an increase in MRT (mean residence time) of 5-FU when the drug was administered by drug-loaded F-SubMGs.
Resumo:
A administração intraperitoneal de 5-fluorouracil (5-FU) no pós-operatório imediato reduz a recorrência local e prolonga a sobrevida dos pacientes com câncer colônico. Contudo, esse tratamento também pode prejudicar a cicatrização das anastomoses intestinais. O objetivo deste estudo foi determinar os efeitos da quimioterapia (QT) intraperitoneal (IP) pós-operatória (PO) precoce com o 5-FU e da selagem anastomótica com o TachoSil sobre o processo de cicatrização de anastomoses colônicas. Quarenta ratos foram divididos em quatro grupos (I - IV, com dez ratos em cada) e submetidos à secção do cólon esquerdo seguida por anastomose. As anastomoses dos ratos dos grupos II e IV foram cobertas com o TachoSil. Solução salina (2 ml/dia grupos I e II) ou 5-FU (20 mg/kg/dia grupos III e IV) foi administrado por via IP uma vez ao dia, desde do procedimento cirúrgico até a morte programada dos animais no quarto dia pós-operatório. Foram realizadas medidas da pressão de ruptura e análise histopatológica das anastomoses. A perda relativa de peso foi significativamente maior nos animais do grupo III comparado a todos os demais grupos (p=0,0004). Não houve diferença significativa entre os grupos no que se refere à presença de fístulas, coleções perianastomóticas, sinais de dilatação intestinal pré-anastomótica ou aderências pós-operatórias. A pressão de ruptura foi significativamente menor no grupo III comparada a todos os demais grupos (p=0,001). A neoangiogênese foi significativamente menor no grupo III comparada aos grupos I e II (p=0,05). A infiltração fibroblástica foi significativamente maior no grupo I e em comparação ao grupo III (p=0,035). Não ocorreu diferença significativa entre os grupos no que concerne à presença de infiltração de células inflamatórias e deposição de colágeno. Os dados obtidos permitem concluir que a QT IP precoce com 5-FU afetou negativamente a fase inicial da cicatrização de anastomoses colônicas. Contudo, a selagem com o TachoSil foi capaz de reverter alguns dos efeitos adversos decorrentes da QT.
Resumo:
A rapid and sensitive detection method for the determination of 5-fluorouracil(5-FU) in real samples such as human urine and bovine serum albumin (BSA) was described. A carbon fiber microdisk electrode was used to perform end-column amperometric detection in capillary zone electrophoresis. The detection limit was as low as 2.5x10(-7) M and the wider linear range for the concentration was between 5x10(-6) and 1x10(-4) M with a correlation coefficient of 0.995.
Resumo:
In this paper, the polypyrrole (PPy) film modified electrodes are used as an electroreleasing reservoir. The electrochemically controlled release of 5-fluorouracil (5-FU) from a PPy film modified electrode to aqueous electrolytes is studied by the in situ probe beam deflection (PBD) method combined with cyclic voltammetry (CV) and chronoamperometry (CA). The PBD results reveal that the release of 5-FU from PPy film depends on the electrochemical redox process of the PPy film electrode. The released amount is controlled by the reduction potential and is proportional to the thickness of the film. The exchange of 5-FU anions with Cl- on an open circuit is slow on the time scale of minutes, but the release of 5-FU anions can proceed quickly at -0.6 V (vs Ag/AgCl). The amount of released 5-FU decreases with the time that the PPy film is soaked in aqueous solution. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The aim of this study was to determine the maximum tolerated dose (MTD), dose-limiting toxicities (DLT), and potential activity of combined gemcitabine and continuous infusion 5-fluorouracil (5-FU) in metastatic breast cancer (MBC) patients that are resistant to anthracyclines or have been pretreated with both anthracyclines and taxanes. 15 patients with MBC were studied at three European Organization for Research and Treatment of Cancer centres. 13 patients had received both anthracylines and taxanes. Gemcitabine was given intravenously (i.v.) on days 1 and 8, and 5-FU as a continuous i.v. infusion on days 1 through to 14, both drugs given in a 21-day schedule at four different dose levels. Both were given at doses commonly used for the single agents for the last dose level (dose level 4). One of 6 patients at level 4 (gemcitabine 1200 mg/m2 and 5-FU 250 mg/m2/day) had a DLT, a grade 3 stomatitis and skin toxicity. One DLT, a grade 3 transaminase rise and thrombosis, occurred in a patient at level 2 (gemcitabine 1000 mg/m2 and 5-FU 200 mg/m2/day). Thus, the MTD was not reached. One partial response and four disease stabilisations were observed. Only 1 patient withdrew from the treatment due to toxicity. The MTD was not reached in the phase I study. The combination of gemcitabine and 5-FU is well tolerated at doses up to 1200 mg/m2 given on days 1 and 8 and 250 mg/m2/day given on days 1 through to 14, respectively, every 21 days. The clinical benefit rate (responses plus no change of at least 6 months) was 33% with one partial response, suggesting that MBC patients with prior anthracycline and taxane therapy may derive significant benefit from this combination with minimal toxicity.
Resumo:
5-fluorouracil (5-FU) is widely used in the treatment of cancer. Over the past 20 years, increased understanding of the mechanism of action of 5-FU has led to the development of strategies that increase its anticancer activity. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. Emerging technologies, such as DNA microarray profiling, have the potential to identify novel genes that are involved in mediating resistance to 5-FU. Such target genes might prove to be therapeutically valuable as new targets for chemotherapy, or as predictive biomarkers of response to 5-FU-based chemotherapy.
Resumo:
Thymidylate synthase (TS) is a critical target for chemotherapeutic agents such as 5-fluorouracil (5-FU) and antifolates such as tomudex (TDX),multitargeted antifolate, and ZD9331. Using the MCF-7 breast cancer line, we have developed p53 wild-type (M7TS90) and null (M7TS90-E6) isogenic lines with inducible TS expression (approximately 6-fold induction compared with control after 48 h). In the M7TS90 line, inducible TS expression resulted in a moderate approximately 3-fold increase in 5-FU IC-50(72 h) dose and a dramatic >20-fold increase in the IC-50(72 h) doses of TDX, multitargeted antifolate, and ZD9331. S-phase cell cycle arrest and apoptosis induced by the antifolates were abrogated by TS induction. In contrast, cell cycle arrest and apoptosis induced by 5-FU was unaffected by TS expression levels. Inactivation of p53 significantly increased resistance to 5-FU and the antifolates with IC-50(72 h) doses for 5-FU and TDX of >100 and >10 microM, respectively, in the M7TS90-E6 cell line. Furthermore, p53 inactivation completely abrogated the cell cycle arrest and apoptosis induced by 5-FU. The antifolates induced S-phase arrest in the p53 null cell line; however, the induction of apoptosis by these agents was significantly reduced compared with p53 wild-type cells. Both inducible TS expression and the addition of exogenous thymidine (10 microM) blocked p53 and p21 induction by the antifolates but not by 5-FU in the M7TS90 cell line. Similarly, inducible TS expression and exogenous thymidine abrogated antifolate but not 5-FU-mediated up-regulation of Fas/CD95 in M7TS90 cells. Our results indicate that in M7TS90 cells, inducible TS expression modulates p53 and p53 target gene expression in response to TS-targeted antifolate therapies but not to 5-FU.
Resumo:
The fluoropyrimidine 5-Fluorouracil (5-FU) is widely used in the treatment of cancer. To identify novel downstream mediators of tumor cell response to 5-FU, we used DNA microarray technology to identify genes that are transcriptionally activated by 5-FU treatment in the MCF-7 breast cancer cell line. Of 2400 genes analyzed, 619 were up-regulated by >3-fold. Highly up-regulated genes (>6-fold) with signal intensities of >3000 were analyzed by Northern blot. Genes that were consistently found to be up-regulated were spermine/spermidine acetyl transferase (SSAT), annexin II, thymosin-beta-10, chaperonin-10, and MAT-8. Treatment of MCF-7 cells with the antifolate tomudex and DNA-damaging agent oxaliplatin also resulted in up-regulation of each of these targets. The 5-FU-induced activation of MAT-8, thymosin-beta-10, and chaperonin-10 was abrogated by inactivation of p53 in MCF-7 cells, whereas induction of SSAT and annexin II was significantly reduced in the absence of p53. Moreover, each of these genes contained more than one potential p53-binding site, suggesting that p53 may play an important regulatory role in 5-FU-induced expression of these genes. In addition, we found that basal expression levels of SSAT, annexin II, thymosin beta-10, and chaperonin-10 were increased (by approximately 2-3-fold), and MAT-8 expression dramatically increased (by approximately 10-fold) in a 5-FU-resistant colorectal cancer cell line (H630-R10) compared with the parental H630 cell line, suggesting these genes may be useful biomarkers of resistance. These results demonstrate the potential of DNA microarrays to identify novel genes involved in mediating the response of tumor cells to chemotherapy.