362 resultados para 40Ar
Resumo:
White micas in carbonate-rich tectonites and a few other rock types of large thrusts in the Swiss Helvetic fold-and-thrust belt have been analyzed by Ar-40/Ar-39 and Rb/Sr techniques to better constrain the timing of Alpine deformation for this region. Incremental Ar-40/Ar-39 heating experiments of 25 weakly metamorphosed (anchizone to low greenschist) samples yield plateau and staircase spectra. We interpret most of the staircase release spectra result from variable mixtures of syntectonic (neoformed) and detrital micas. The range in dates obtained within individual spectra depends primarily on the duration of mica nucleation and growth, and relative proportions of neoformed and detrital mica. Rb/Sr analyses of 12 samples yield dates of ca. 10-39 Ma (excluding one anomalously young sample). These dates are slightly younger than the Ar-40/Ar-39 total gas dates obtained for the same samples. The Rb/ Sr dates were calculated using initial Sr-87/Sr-86 ratios obtained from the carbonate-dominated host rocks, which are higher than normal Mesozoic carbonate values due to exchange with fluids of higher Sr-87/Sr-86 ratios (and lower O-18/O-16 ratios). Model dates calculated using Sr-87/Sr-86 values typical of Mesozoic marine carbonates more closely approximate the Ar-40/Ar-39 total gas dates for most of the samples. The similarities of Rb/Sr and Ar-40/Ar-39 total gas dates are consistent with limited amounts of detrital mica in the samples. The delta(18)O values range from 24-15%. (VSMOW) for 2-6 mum micas and 27-16parts per thousand for the carbonate host rocks. The carbonate values are significantly lower than their protolith values due to localized fluid-rock interaction and fluid flow along most thrust surfaces. Although most calcite-mica pairs are not in oxygen isotope equilibrium at temperatures of ca. 200-400 degreesC, their isotopic fractionations are indicative of either 1) partial exchange between the minerals and a common external fluid, or 2) growth or isotopic exchange of the mica with the carbonate after the carbonate had isotopically exchanged with an external fluid. The geological significance of these results is not easily or uniquely determined, and exemplifies the difficulties inherent in dating very fine-grained micas of highly deformed tectonites in low-grade metamorphic terranes. Two generalizations can be made regarding the dates obtained from the Helvetic thrusts: 1) samples from the two highest thrusts (Mt. Gond and Sublage) have all of their Ar-40/Ar-39 steps above 20 Ma, and 2) most samples from the deepest Helvetic thrusts have steps (often accounting for more than 80% of Ar-39 release) between 15 and 25 Ma. These dates are consistent with the order of thrusting in the foreland-imbricating system and increase proportions of neoformed to detrital mica in the more metamorphosed hinterland and deeply buried portions of the nappe pile. Individual thrusts accommodated the majority of their displacement during their initial incorporation into the foreland-imbricating system, and some thrusts remained active or were reactivated down to 15 Ma.
Resumo:
Direct absolute dating of the Penninic Frontal Thrust tectonic motion is achieved using the Ar-40/Ar-39 technique in the Pelvoux Crystalline Massif (Western Alps). The dated phengites were formed syn-kinematically in shear zones. They underline the brittle-ductile stretching lineation, pressure-shadow fibres and slickensides consistent with underthrusting of the European continental slab below the propagating Penninic Thrust. Chlorite-phengite thermobarometry yields 10-15 km and T similar to 280 degrees C, while Ar-40/Ar-39 phengite ages mainly range between 34 and 30 Ma, with one younger age at 27 Ma. This Early Oligocene age range matches a major tectonic rearrangement of the Alpine chain. Preservation of prograde Ar-40/Ar-39 ages is ascribed to passive exhumation of the Pelvoux shear zone network, sandwiched between more external thrusts and the Penninic Front reactivated as an E-dipping detachment fault. Partial resetting in the Low Temperature part of argon spectra below 24 Ma is ascribed to brittle deformation and alteration of phengites.
Resumo:
Stable isotope and Ar-40/Ar-39 measurements,were made on samples associated with a major tectonic discontinuity in the Helvetic Alps, the basal thrust of the Diablerets nappe (external zone of the Alpine Belt) in order to determine both the importance of fluids in this thrust zone and the timing of thrusting. A systematic decrease in the delta(18)O values (up to 6 parts per thousand) of calcite, quartz, and white mica exists within a 10- to 70-m-wide zone over a distance of 37 km along the thrust, and they become more pronounced toward the root of the nappe. A similar decrease in the delta(13)C values of calcite is observed only in the deepest sections (up to 3 parts per thousand). The delta D-SMOW (SMOW = standard mean ocean water) values of white mica are -54 parts per thousand +/- 8 parts per thousand (n = 22) and are independent of the distance from the thrust. These variations are interpreted to reflect syntectonic solution reprecipitation during fluid passage along the thrust. The calculated delta(18)O and delta D values (versus SMOW) for the fluid in equilibrium with the analyzed minerals is 12 parts per thousand to 16 parts per thousand and -30 parts per thousand to +5 parts per thousand, respectively, for assumed temperatures of 250 to 450 degrees C. The isotopic and structural data are consistent with fluids derived from the deep-seated roots of the Helvetic nappes where large volumes of Mesozoic sediments were metamorphosed to the amphibolite facies, It is suggested that connate and metamorphic waters, overpressured by rapid tectonic burial in a subductive system escaped by upward infiltration along moderately dipping pathways until they reached the main shear zone at the base of the moving pile, where they were channeled toward the surface, This model also explains the mechanism by which large amounts of fluid were removed from the Mesozoic sediments during Alpine metamorphism. White mica Ar-49/Ar-39 ages vary from 27 Ma far from the Diablerets thrust to 15 Ma along the thrust. An older component is observed in micas far from the thrust, interpreted as a detrital signature, and indicates that regional metamorphic temperatures were less than about 350 degrees C. The;plateau and near plateau ages nearest the thrust are consistent with either neocrystallization of white mica or argon loss by recrystallization during thrusting, which may have been enhanced in the zones of highest fluid flow. The 15 Ma Ar-40/Ar-39 age plateau measured on white mica sampled exactly on the thrust surface dates the end of both fluid flow and tectonic transport.
Resumo:
Fission-track and (40)Ar/(39)Ar ages place time constraints on the exhumation of the North Himalayan nappe stack, the Indus Suture Zone and Molasse, and the Transhimalayan Batholith in eastern Ladakh (NW India). Results from this and previous studies on a north-south transect passing near Tso Morari Lake suggest that the SW-directed North Himalayan nappe stack (comprising the Mata, Tetraogal and Tso Morari nappes) was emplaced and metamorphosed by c. 50-45 Ma, and exhumed to moderately shallow depths (c. 10 km) by c. 45-40 Ma. From the mid-Eocene to the present, exhumation continued at a steady and slow rate except for the root zone of the Tso Morari nappe, which cooled faster than the rest of the nappe stack. Rapid cooling occurred at c. 20 Ma and is linked to brittle deformation along the normal Ribil-Zildat Fault concomitant with extrusion of the Crystalline nappe in the south. Data from the Indus Molasse suggest that sediments were still being deposited during the Miocene.
Resumo:
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) - Tso Monad transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48-40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40-30 Ma in the Tso Monad dome (northern section of the transect) and by 30-20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.
Resumo:
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc-Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D-1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D-2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1-39.7 Ma Ar-40/Ar-39 mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Micas are commonly used in Ar-40/Ar-39 thermochronological studies of variably deformed rocks yet the physical basis by which deformation may affect radiogenic argon retention in mica is poorly constrained. This study examines the relationship between deformation and deformation-induced microstructures on radiogenic argon retention in muscovite, A combination of furnace step-heating and high-spatial resolution in situ UV-laser ablation Ar-40/Ar-39 analyses are reported for deformed muscovites sampled from a granitic pegmatite vein within the Siviez-Mischabel Nappe, western Swiss Alps (Penninic domain, Brianconnais unit). The pegmatite forms part of the Variscan (similar to 350 Ma) Alpine basement and exhibits a prominent Alpine S-C fabric including numerous mica `fish' that developed under greenschist facies metamorphic conditions, during the dominant Tertiary Alpine tectonic phase of nappe emplacement. Furnace step-heating of milligram quantities of separated muscovite grains yields an Ar-40/Ar-39 age spectrum with two distinct staircase segments but without any statistical plateau, consistent with a previous study from the same area. A single (3 X 5 mm) muscovite porphyroclast (fish) was investigated by in situ UV-laser ablation. A histogram plot of 170 individual Ar-40/Ar-39 UV-laser ablation ages exhibit a range from 115 to 387 Ma with modes at approximately 340 and 260 Ma. A variogram statistical treatment of the (40)Ad/Ar-39 results reveals ages correlated with two directions; a highly correlated direction at 310 degrees and a lesser correlation at 0 degrees relative to the sense of shearing. Using the highly correlated direction a statistically generated (Kriging method) age contour map of the Ar-40/Ar-39 data reveals a series of elongated contours subparallel to the C-surfaces which where formed during Tertiary nappe emplacement. Similar data distributions and slightly younger apparent ages are recognized in a smaller mica fish. The observed intragrain age variations are interpreted to reflect the partial loss of radiogenic argon during Alpine (similar to 35 Ma) greenschist facies metamorphism. One-dirnensional diffusion modelling results are consistent with the idea that the zones of youngest apparent age represent incipient shear band development within the mica porphyroclasts, thus providing a network of fast diffusion pathways. During Alpine greenschist facies metamorphism the incipient shear bands enhanced the intragrain loss of radiogenic argon. The structurally controlled intragrain age variations observed in this investigation imply that deformation has a direct control on the effective length scale for argon diffusion, which is consistent with the heterogeneous nature of deformation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have selected and dated three contrasting rock-types representative of the magmatic activity within the Permian layered mafic complex of Mont Collon, Austroalpine Dent Blanche nappe, Western Alps. A pegmatitic gabbro associated to the main cumulus sequence yields a concordant U/Pb zircon age of 284.2 +/- 0.6 Ma, whereas a pegmatitic granite dike crosscutting the latter yields a concordant age of 282.9 +/- 0.6 Ma. A Fe-Ti-rich ultrabasic lamprophyre, crosscutting all other lithologies of the complex, yields an 40Ar/39Ar plateau age of 260.2 +/- 0.7 Ma on a kaersutite concentrate. All ages are interpreted as magmatic. Sub-contemporaneous felsic dikes within the Mont Collon complex are ascribed to anatectic back-veining from the country-rock, related to the emplacement of the main gabbroic body in the continental crust, which is in accordance with new isotopic data. The lamprophyres have isotopic compositions typical of a depleted mantle, in contrast to those of the cumulate gabbros, close to values of the Bulk Silicate Earth. This indicates either contrasting sources for the two magma pulses - the subcontinental lithospheric mantle for the gabbros and the underlying asthenosphere for the lamprophyres - or a single depleted lithospheric source with variable degrees of crustal contamination of the gabbroic melts during their emplacement in the continental crust. The Mont Collon complex belongs to a series of Early Permian mafic massifs, which emplaced in a short time span about 285-280 Ma ago, in a limited sector of the post-Variscan continental crust now corresponding to the Austroalpine/ Southern Alpine domains and Corsica. This magmatic activity was controlled in space and time by crustal-scale transtensional shear zones.
Resumo:
In situ UV-Iaser ablation Ar-40/(39) Ar geochronological and geochemical data, together with rock and mineral compositional data, have been determined from pseudotachylyte and surrounding mylonitic gneiss associated with the UHP whiteschists of the Dora Maira Massif, Italy. Several generations of fresh pseudotachylyte occur as irregular veins up to a few cur thick both parallel and at high angles to the foliation. Whole rock XRF data collected from representative lithologies of mylonitic gneiss are uniformly consistent with a mildly alkalic granitic protolith. Minimal compositional variation is observed between the pseudotachylyte and its surrounding mylonitic gneiss. The pseudotachylyte contains newly crystallized grains of biotite and K-feldspar in a matrix of glass with partially fused grains of quartz, zircon, apatite, and titanite. Electron microprobe analyses of the glass show significant compositional variation that is probably strongly influenced by micrometer-scale changes in mineralogy. UV-Iaser ablation ICP-MS traverses across the mylonitic gneiss-pseudotachylyte contact are consistent with cataclastic communition of REE carriers such as epidote, monazite, allanite, zircon, and apatite before melting as an efficient mechanism of REE homogenization in the pseudotachylyte. The 40Ar/39Ar data from one band of pseudotachylyte indicate formation at 20.1 +/- 0.5 Ma, when the mylonitic gneisses were already in a near surface position. The variable effects of top-to-the-west shear deformation within outcrops of the coesite-bearing unit are reflected in localized zones of protomylonite, cataclasite, ultracataclasite, and pseudotachylyte. Preservation of several generations of pseudotachylyte suggests that seismic events may have played a significant role in triggering late unroofing of the UHP rocks. It is speculated that deeper crustal seismic events potentially played a role in the unroofing of the UHP rocks at earlier stages in their exhumation history. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coarse-grained gabbros from two different localities in the Gets nappe (Upper Prealps) have been dated by U-Pb and Ar-40/Ar-39 isotopic analyses. Zircons from both gabbros gave identical concordant U-Pb ages of 166 +/- 1 Ma (Fig. 4). Amphibole from one of them gave an Ar-40/Ar-39 plateau age of 165.9 +/- 2.2 Ma (Fig. 5). This concordance implies that 166 +/- 1 Ma is the age of magmatic crystallization of these gabbros. The Gets wildflysch with its mafic and ultramafic lenses is an ophiolitic melange, that we infer to come from a proximal part of the accretionary prism at the foot of the active SE margin of the Piemont ocean. In this position we can expect to find remnants of the oldest parts of the Piemont oceanic crust. These are the first high-precision dates using modern techniques from an Alpine ophiolite and are in excellent agreement with the following: 1) The few, somewhat younger, reliable ages on ophiolites from the probable continuation of the Piemont basin into the Apennines and Corsica; 2) Recent data on the age of the first supra-ophiolitic sediments (Late Bathonian to Early Callovian radiolarites); 3) The structural and stratigraphic evolution of the Brianconnais (s.s.) domain, the future NW margin of the Piemont ocean. We note a remarkable coincidence, in Late Bajocian time, between: (A) the end of tensile fracturing in the Brianconnais continental crust; (B) the beginning of its subsidence; (C) the age of the Gets ophiolites. This coincidence is consistent with an ocean opening mechanism based on a combination of subhorizontal extension and thermally driven vertical movements of the lithosphere.
Resumo:
Phengites from the eclogite and blueschist-facies sequences of the Cycladic island of Syros (Greece) have been dated by the in situ UV-laser ablation Ar-40/Ar-39 method. A massive, phengite-rich eclogite and an omphacite-rich metagabbro were investigated. The phengites are eubedral and coarse-grained (several 100 mum), strain-free and exhibit no evidence for late brittle deformation or recrystallization. Apparent ages in these samples range from 43 to 50 Ma for the phengite-rich eclogite and 42 to 52 Ma for the ompbacitic metagabbro. This large spread of ages is visible at all scales-within individual grains as well as in domains of several 100 mum and across the entire sample (ca. 2 cm). Such variations have been traditionally attributed to metamorphic cooling or the incorporation of excess argon. However, the textural equilibrium between the phengites and other high pressure phases and the subtle compositional variations within the phengites, especially the preservation of growth textures, alternatively suggest that the observed range in ages may reflect variations of radiogenic argon acquired during phengite formation and subsequent growth, thus dating a discrete event on the prograde path. This implies that the oldest phengite 40Ar/39Ar ages provide the best estimate of a minimum crystallization age, which is in agreement with recently reported U-Pb and Lu-Hf geochronological data. Our results are consistent with available stable isotope data and further suggest that, under fluid-restricted conditions, both stable and radiogenic isotopic systems can survive without significant isotopic exchange during subduction and exhumation from eclogite-facies P-T conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High-precision isotope dilution - thermal ionization mass spectrometry (ID-TIMS) U-Pb zircon and baddeleyite ages from the PX1 vertically layered mafic intrusion Fuerteventura, Canary Islands, indicate initiation of magma crystallization at 22.10 +/- 0.07 Ma. The magmatic activity lasted a minimum of 0.52 Ma. Ar-40/Ar-39 amphibole dating yielded ages from 21.9 +/- 0.6 to 21.8 +/- 0.3, identical within errors to the U-Pb ages, despite the expected 1% theoretical bias between Ar-40/Ar-39 and U-Pb dates. This overlap could result from (i) rapid cooling of the intrusion (i. e., less than the 0.3 to 0.6 Ma 40Ar/39Ar age uncertainties) from closure temperatures (T-c) of zircon (699-988 degrees C) to amphibole (500-600 degrees C); (ii) lead loss affecting the youngest zircons; or (iii) excess argon shifting the plateau ages towards older values. The combination of the Ar-40/Ar-39 and U/Pb datasets implies that the maximum amount of time PX1 intrusion took to cool below amphibole T-c is 0.8 Ma, suggesting PX1 lifetime of 520 000 to 800 000 Ma. Age disparities among coexisting baddeleyite and zircon (22.10 +/- 0.07/0.08/0.15 Ma and 21.58 +/- 0.15/0.16/0.31 Ma) in a gabbro sample from the pluton margin suggest complex genetic relationships between phases. Baddeleyite is found preserved in plagioclase cores and crystallized early from low silica activity magma. Zircon crystallized later in a higher silica activity environment and is found in secondary scapolite and is found close to calcite veins, in secondary scapolite that recrystallised from plagioclase. close to calcite veins. Oxygen isotope delta O-18 values of altered plagioclase are high (+7.7), indicating interaction with fluids derived from host-rock carbonatites. The coexistence of baddeleyite and zircon is ascribed to interaction of the PX1 gabbro with CO2-rich carbonatite-derived fluids released during contact metamorphism.
Resumo:
We explore the timing of deformation and exhumation of the Siviez-Mischabel Nappe (western Swiss Alps), which has been considered a classic example of a midcrustal crystalline nappe since the studies of Argand [1916]. This study presents Ar-40/Ar-39 ages obtained on both synkinematic white mica from Permo-Triassic cover sediments and more complex white mica populations from basement gneisses of the Siviez-Mischabel and middle Pennine Nappes. Primary foliation developed in cover units by nucleation, growth, and rigid rotation of mica grains during noncoaxial Alpine deformation. Although some samples show a crenulation of this primary foliation, mica growth appears to have occurred only during the development of primary foliation, the main phase of greenschist facies deformation related to imbrication of the Siviez-Mischabel Nappe and other middle Pennine Nappes. Good agreement exists between independent estimates of the timing of deformation and reported Ar-40/Ar-39, white mica ages from cover units of the central and southern Siviez-Mischabel Nappe. In cover units from the central and southern Siviez-Mischabel regions of the study area, Ar-40/Ar-39 ages appear to date synkinematic white mica growth. Results suggest that the Siviez-Mischabel :Nappe was emplaced and developed foliation during a 5 m.y. period from 41 to 36 Ma. In cover units from the eastern Siviez-Mischabel, however, Ar-40/Ar-39 white mica ages appear to date postkinematic thermal events. These thermal events may be related to Oligocene magmatic activity in the lower Pennine Nappes or to Miocene development of the Simplon fault zone. Variations in the relation between Alpine age and grain size for cover samples from the central, eastern, and southern Siviez-Mischabel correlate well with the regional variations in temperature inferred from quartz microfabrics and the pattern of regional metamorphism. When considered in concert with other recent isotopic studies on the timing of major tectonic and thermal events in the western Swiss Alps, these data support arguments that the relative timing of events such as thrusting and back thrusting of crystalline nappes in hinterland units and exhumation of high-pressure units in the suture zone of the western Alps are intimately related and synchronous on the scale of a few million years. Copyright 1998 by the American Geophysical Union.
Resumo:
To constrain the age of strike-slip shear, related granitic magmatism, and cooling along the Insubric line, 29 size fractions of monazite and xenotime were dated by the U-Pb method, and a series of 25 Rb-Sr and Ar-40/Ar-39 ages were measured on different size fractions of muscovite and biotite. The three pegmatitic intrusions analyzed truncate high-grade metamorphic mylonite gneisses of the Simplon shear zone, a major Alpine structure produced in association with dextral strike-slip movements along the southern edge of the European plate, after collision with its Adriatic indenter. Pegmatites and aplites were produced between 29 and 25 Ma in direct relation to right-lateral shear along the Insubric line, by melting of continental crust having Sr-87/Sr-86 between 0.7199 and 0.7244 at the time of melting. High-temperature dextral strike-slip shear was active at 29.2 +/- 0.2 (2 sigma) Ma, and it terminated before 26.4 +/- 0.1 Ma. During dike injection, temperatures in the country rocks of the Isorno-Orselina and Monte Rosa structural units did not exceed approximate to 500 degrees C, leading to fast initial cooling, followed by slower cooling to approximate to 350 degrees C within several million years. In one case, initial cooling to approximate to 500 degrees C was significantly delayed by about 4 m.y., with final cooling to approximate to 300 degrees C at 20-19 Ma in all units. For the period between 29 and 19 Ma, cooling of the three sample localities was non-uniform in space and time, with significant variations on the kilometre scale. These differences are most likely due to strongly varying heat flow, and/or heterogeneous distribution of unroofing rates within the continuously deforming Insubric line. If entirely ascribed to differences in unroofing, corresponding rates would vary between 0.5 and 2.5 mm/y, for a thermal gradient of 30 degrees/km.
Resumo:
The results of Ar-40/Ar-39 dating integrated with calcareous plankton biostratigraphical data performed on two volcaniclastic layers (VLs) interbedded in Burdigalian to Lower Langhian outer shelf carbonate sediments cropping out in Monferrato (NW Italy) are presented. The investigated VLs, named Villadeati and Varengo, are thick sedimentary bodies with scarce lateral continuity. They are composed of prevalent volcanogenic material (about 87 up to 90% by volume) consisting of glass shards and volcanic phenocrysts (plagioclase, biotite, quartz, amphibole, sanidine and magnetite) and minor extrabasinal and intrabasinal components. On the basis of their composition and sedimentological features, the VLs have been interpreted as distal shelf turbidites deposited below storm wave base. However, compositional characteristics evidence the rapid resedimentation of the volcanic detritus after its primary deposition and hence the VL sediments can be considered penecontemporaneous to the encasing deposits. Biostratigraphical analyses were carried out on the basis of a quantitative study of calcareous nannofossil and planktonic foraminifer associations, whilst Ar-40/Ar-39 dating were performed on biotite at Villadeati and on homeblende at Varengo. The data resulting from the Villadeati section have permitted to estimate an age of 18.7 +/- 0.1 Ma for the last common occurrence (LCO) of Sphenolithus belemnos whereas those from Varengo allowed to extrapolate an age of 16.4 Ma +/-0.1 Ma for the first occurrence (FO) of Praeorbulina sicana. This latter biovent is commonly used to approximate the base of the Langhian stage, that corresponds to the Early-Middle Miocene boundary.