884 resultados para 3-BODY PROBLEM
Resumo:
In this paper, we show the existence of new families of spatial central configurations for the n + 3-body problem, n >= 3. We study spatial central configurations where n bodies are at the vertices of a regular n-gon T and the other three bodies are symmetrically located on the straight line that is perpendicular to the plane that contains T and passes through the center of T. The results have simple and analytic proofs. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We compute families of symmetric periodic horseshoe orbits in the restricted three-body problem. Both the planar and three-dimensional cases are considered and several families are found.We describe how these families are organized as well as the behavior along and among the families of parameters such as the Jacobi constant or the eccentricity. We also determine the stability properties of individual orbits along the families. Interestingly, we find stable horseshoe-shaped orbit up to the quite high inclination of 17◦
Resumo:
Trajectories of the planar, circular, restricted three-body problem are given in the configuration space through the caustics associated to the invariant tori of quasi-periodic orbits. It is shown that the caustics of trajectories librating in any particular resonance display some features associated to that resonance. This method can be considered complementary to the Poincare surface of section method, because it provides information not accessible by the other method.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An analytical solution of the two body problem perturbed by a constant tangential acceleration is derived with the aid of perturbation theory. The solution, which is valid for circular and elliptic orbits with generic eccentricity, describes the instantaneous time variation of all orbital elements. A comparison with high-accuracy numerical results shows that the analytical method can be effectively applied to multiple-revolution low-thrust orbit transfer around planets and in interplanetary space with negligible error.
Resumo:
A formulation of the perturbed two-body problem that relies on a new set of orbital elements is presented. The proposed method represents a generalization of the special perturbation method published by Peláez et al. (Celest Mech Dyn Astron 97(2):131?150,2007) for the case of a perturbing force that is partially or totally derivable from a potential. We accomplish this result by employing a generalized Sundman time transformation in the framework of the projective decomposition, which is a known approach for transforming the two-body problem into a set of linear and regular differential equations of motion. Numerical tests, carried out with examples extensively used in the literature, show the remarkable improvement of the performance of the new method for different kinds of perturbations and eccentricities. In particular, one notable result is that the quadratic dependence of the position error on the time-like argument exhibited by Peláez?s method for near-circular motion under the J2 perturbation is transformed into linear.Moreover, themethod reveals to be competitive with two very popular elementmethods derived from theKustaanheimo-Stiefel and Sperling-Burdet regularizations.
Resumo:
EDROMO is a special perturbation method for the propagation of elliptical orbits in the perturbed two-body problem. The state vector consists of a time-element and seven spatial elements, and the independent variable is a generalized eccentric anomaly introduced through a Sundman time transformation. The key role in the derivation of the method is played by an intermediate reference frame which enjoys the property of remaining fixed in space as long as perturbations are absent. Three elements of EDROMO characterize the dynamics in the orbital frame and its orientation with respect to the intermediate frame, and the Euler parameters associated to the intermediate frame represent the other four spatial elements. The performance of EDromo has been analyzed by considering some typical problems in astrodynamics. In almost all our tests the method is the best among other popular formulations based on elements.
Resumo:
In this article, an approximate analytical solution for the two body problem perturbed by a radial, low acceleration is obtained, using a regularized formulation of the orbital motion and the method of multiple scales. The results reveal that the physics of the problem evolve in two fundamental scales of the true anomaly. The first one drives the oscillations of the orbital parameters along each orbit. The second one is responsible of the long-term variations in the amplitude and mean values of these oscillations. A good agreement is found with high precision numerical solutions.
Resumo:
We discuss a many-body Hamiltonian with two- and three-body interactions in two dimensions introduced recently by Murthy, Bhaduri and Sen. Apart from an analysis of some exact solutions in the many-body system, we analyse in detail the two-body problem which is completely solvable. We show that the solution of the two-body problem reduces to solving a known differential equation due to Heun. We show that the two-body spectrum becomes remarkably simple for large interaction strengths and the level structure resembles that of the Landau levels. We also clarify the 'ultraviolet' regularization which is needed to define an inverse-square potential properly and discuss its implications for our model.
Resumo:
Considering the linearized boundary layer equations for three-dimensional disturbances, a Mangler type transformation is used to reduce this case to an equivalent two-dimensional one.
Resumo:
The current study focuses on the effect of the material type and the lubricant on the abrasive wear behaviour of two important commercially available ceramic on ceramic prosthetic systems, namely, Biolox(R) forte and Bioloxl(R) delta (CeramTec AG, Germany). A standard microabrasion wear apparatus was used to produce '3-body' abrasive wear scars with three different lubricants: ultrapure water, 25 vol% new-born calf serum solution and 1 wt% carboxymethyl cellulose sodium salt (CMC-Na) solution. 1 mu m alumina particles were used as the abrasive. The morphology of the wear scar was examined in detail using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Subsurface damage accumulation was investigated by Focused Ion Beam (FIB) cross-sectional milling and Transmission Electron Microscopy (TEM). The effect of the lubricant on the '3-body' abrasive wear mechanisms is discussed and the effect of material properties compared. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper we show the existence of three new families of stacked spatial central configurations for the six-body problem with the following properties: four bodies are at the vertices of a regular tetrahedron and the other two bodies are on a line connecting one vertex of the tetrahedron with the center of the opposite face. (c) 2009 Elsevier B.V. All rights reserved.