987 resultados para 29-284
Resumo:
Phylo-zonations (or lineage-zonations) are based upon morphological changes within individual evolutionary lineages. These zonations, although potentially of use for stratigraphic subdivision and correlation, often suffer from a lack of quantitative exactness in the definitions of chronospecies. Thus exact reproducibility is hindered for stratigraphic determinations. The potential of morphometrically defined phylo-zonations is demonstrated on a temperate South Pacific Late Cenozoic lineage of planktonic foraminifera (Globorotalia conoidea through intermediate forms to Globorotalia inflata in DSDP Site 284) exhibiting phyletic gradualism. Our sampling interval is about 0.1 m.y. during the last 8 m.y. Changes in the number of chambers in the final whorl, test conicalness, percentage of keeled forms, and test roundness or inflatedness, are used to quantitatively define the following five chronospecies: G. conoidea (Late Miocene; 6.1->8.3 m.y.), G. conomiozea (latest Miocene ; 5.3-6.1 m.y.), G. puncticulata sphericomiozea (earliest Pliocene; 4.5-5.3 m.y.), G. puncticulata puncticulata (Early-Middle Pliocene; 2.9-4.5 m.y.), and G. inflata (Late Pliocene-Quaternary; 0-2.9 m.y.). This phylo-zonation is directly applicable to temperate cool subtropical Southern Hemisphere areas where the evolution took place (Kennett, 1967, 1973; Scott, 1979). It is still not known if the lineage occurs elsewhere; thus the applicability of the phylo-zonation over broader areas is still uncertain. Trends in general size and aperture shape seem to be climatically controlled, and thus may be only of local stratigraphic utility. The practical applications of morphometric phylo-zonation for stratigraphy is to a large extent dependent upon the amount of time and effort required to statistically define the trends. Experiments with large numbers of subsamples from this lineage demonstrate that accurate stratigraphic determinations are possible from measurements on only 15 specimens per sample, except for those very close to chronospecies boundaries.