829 resultados para 130306 Educational Technology and Computing
Resumo:
Mode of access: Internet.
Resumo:
The paper explores the development of learning behaviours in a virtual management course and the factors that impacted on this development. Data suggest that most teams experienced three kinds of learning behaviours – social, operational and content learning. We propose that the need for technical expertise and team participation will vary during these different stages of learning. Addressing the characteristics of these stages, we comment on the development of a ‘completion phase’ of team development. We argue that the extent to which teams demonstrate different learning stages has a significant impact on the development of on-line learning behaviours. Discussing these results, we suggest why different teams develop distinct learning behaviours, with accordant emphasis on teaching as a moderating and co ordinating role, despite current virtual team pedagogical expectations.
Resumo:
This study examined the impact of computer and assistive device use on the employment status and vocational modes of people with physical disabilities in Australia. A survey was distributed to people over 15 years in age with physical disabilities living in the Brisbane area. Responses were received from 82 people, including those with spinal cord injuries, cerebral palsy and muscular dystrophy. Of respondents 46 were employed, 22 were unemployed, and 12 were either students or undertaking voluntary work. Three-quarters of respondents used a computer in their occupations, while 15 used assistive devices. Using logistic regression analysis it was found that gender, education, level of computer skill and computer training were significant predictors of employment outcomes. Neither the age of respondent nor use of assistive software were significant predictors. From information obtained in this study guidelines for a training programme designed to maximize the employability of people with physical disabilities were developed.
Resumo:
Objective: To describe the training undertaken by pharmacists employed in a pharmacist-led information technology-based intervention study to reduce medication errors in primary care (PINCER Trial), evaluate pharmacists’ assessment of the training, and the time implications of undertaking the training. Methods: Six pharmacists received training, which included training on root cause analysis and educational outreach, to enable them to deliver the PINCER Trial intervention. This was evaluated using self-report questionnaires at the end of each training session. The time taken to complete each session was recorded. Data from the evaluation forms were entered onto a Microsoft Excel spreadsheet, independently checked and the summary of results further verified. Frequencies were calculated for responses to the three-point Likert scale questions. Free-text comments from the evaluation forms and pharmacists’ diaries were analysed thematically. Key findings: All six pharmacists received 22 hours of training over five sessions. In four out of the five sessions, the pharmacists who completed an evaluation form (27 out of 30 were completed) stated they were satisfied or very satisfied with the various elements of the training package. Analysis of free-text comments and the pharmacists’ diaries showed that the principles of root cause analysis and educational outreach were viewed as useful tools to help pharmacists conduct pharmaceutical interventions in both the study and other pharmacy roles that they undertook. The opportunity to undertake role play was a valuable part of the training received. Conclusions: Findings presented in this paper suggest that providing the PINCER pharmacists with training in root cause analysis and educational outreach contributed to the successful delivery of PINCER interventions and could potentially be utilised by other pharmacists based in general practice to deliver pharmaceutical interventions to improve patient safety.
Resumo:
Statement of Problem: The second background paper for the Medical School Objective Project (MSOP), defined Educational Technology (ET) as the use of information technology to facilitate student’s learning.1 Medical schools as a group have made limited progress in accomplishing the recommended educational technology goals and there had been much greater use of such technology in basic sciences courses than in clinical clerkships. We will explore the positive and negative implications of incorporating ET into the educational experience of TMC schools. [See PDF for complete abstract]
Resumo:
"September 1985."
Resumo:
The project is working towards building an understanding of the personal interests and experiences of children with the aim of designing appropriate, usable and, most importantly, inspirational educational technology. kidprobe, an adaptation of the technology probe concept, has been used as a lightweight method of gaining contextual information about children's interactions with 'fun' technology. kidprobe has produced design inspiration which focuses primarily on the social and emotional connections children made. The use of kidprobe has generated some important ideas for improving the use of probes with children. It is an important first step in understanding how to effectively adapt probing techniques to inspire the design of technology for children.
Resumo:
We report on student and staff perceptions of synchronous online teaching and learning sessions in mathematics and computing. The study is based on two surveys of students and tutors conducted 5 years apart, and focusses on the educational experience as well as societal and accessibility dimensions. Key conclusions are that both staff and students value online sessions, to supplement face-to-face sessions, mainly for their convenience, but interaction within the sessions is limited. Students find the recording of sessions particularly helpful in their studies.
Resumo:
The movement of Open Educational Resources (OER) is one of the most important trends that are helping education through the Internet worldwide. "Tecnológico de Monterrey" (http://tecvirtual.itesm.mx/) in Mexico, with other Mexican higher education institutions, is creating an Internet/web based repository of OERs and Mobile Resources for the instruction and development of educational researchers at undergraduate, Master's and Doctoral level. There is a lack of open educational resources and material available at the Internet that can help and assist the development and education of educational researchers in Spanish speaking countries. This OER repository is part of a project that is experimenting new technology for the delivery of OERs from one repository (http://catedra.ruv.itesm.mx/) through an indexed OER catalog (http://www.temoa.info/) to mobile devices (Ipod, Iphone, MP3, MP4). This paper presentation will describe and comment about this project: outcomes, best practices, difficulties and technological constraints.
Resumo:
The place of technology in the development of coherent educational responses to environmental and socio-economic disruption is here placed under scrutiny. One emerging area of interest is the role of technology in addressing more complex learning futures, and more especially in facilitating individual and social resilience, or the ability to manage and overcome disruption. However, the extent to which higher education practitioners can utilise technology to this end is framed by their approaches to the curriculum, and the socio-cultural practices within which they are located. This paper discusses how open education might enable learners to engage with uncertainty through social action within a form of higher education that is more resilient to economic, environmental and energy-related disruption. It asks whether open higher education can be (re)claimed by users and communities within specific contexts and curricula, in order to engage with an uncertain world.
Resumo:
Smart home implementation in residential buildings promises to optimize energy usage and save significant amount of energy simply due to a better understanding of user's energy usage profile. Apart from the energy optimisation prospects of this technology, it also aims to guarantee occupants significant amount of comfort and remote control over home appliances both at home locations and at remote places. However, smart home investment just like any other kind of investment requires an adequate measurement and justification of the economic gains it could proffer before its realization. These economic gains could differ for different occupants due to their inherent behaviours and tendencies. Thus it is pertinent to investigate the various behaviours and tendencies of occupants in different domain of interests and to measure the value of the energy savings accrued by smart home implementations in these domains of interest in order to justify such economic gains. This thesis investigates two domains of interests (the rented apartment and owned apartment) for primarily two behavioural tendencies (Finland and Germany) obtained from observation and corroborated by conducted interviews to measure the payback time and Return on Investment (ROI) of their smart home implementations. Also, similar measures are obtained for identified Australian use case. The research finding reveals that building automation for the Finnish behavioural tendencies seems to proffers a better ROI and payback time for smart home implementations.
Resumo:
Very little research has examined K–12 educational technology decision-making in Canada. This collective case study explores the technology procurement process in Ontario’s publicly funded school districts to determine if it is informed by the relevant research, grounded in best practices, and enhances student learning. Using a qualitative approach, 10 senior leaders (i.e., chief information officers, superintendents, etc.) were interviewed. A combination of open-ended and closed-ended questions were used to reveal the most important factors driving technology acquisition, research support, governance procedures, data use, and assessment and return on investment (ROI) measures utilized by school districts in their implementation of educational technology. After participants were interviewed, the data were transcribed, member checked, and then submitted to “Computer-assisted NCT analysis” (Friese, 2014) using ATLAS.ti. The findings show that senior leaders are making acquisitions that are not aligned with current scholarship and not with student learning as the focus. It was also determined that districts struggle to use data-driven decision-making to support the governance of educational technology spending. Finally, the results showed that districts do not have effective assessment measures in place to determine the efficacy or ROI of a purchased technology. Although data are limited to the responses of 10 senior leaders, findings represent the technology leadership for approximately 746,000 Ontario students. The study is meant to serve as an informative resource for senior leaders and presents strategic and research-validated approaches to technology procurement. Further, the study has the potential to refine technology decision-making, policies, and practices in K–12 education.
Resumo:
The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.
Resumo:
The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.