964 resultados para 070709 Veterinary Pathology
Resumo:
A técnica de imuno-histoquímica é usada na rotina diagnóstica e na pesquisa em patologia humana desde 1970, porém seu uso na patologia veterinária é relativamente recente, principalmente com objetivo diagnóstico. A maior dificuldade no uso da imuno-histoquímica na patologia veterinária tem sido a falta de anticorpos específicos para os tecidos animais. Na falta de anticorpos específicos para as espécies domésticas, a patologia veterinária freqüentemente faz uso de anticorpos que apresentam reatividade cruzada entre antígenos humanos e animais. O objetivo deste trabalho foi testar a reatividade cruzada de diversos anticorpos feitos para uso humano em tecido parafinado de algumas espécies animais, utilizando-se dos novos métodos de recuperação antigênica e amplificação da reação imuno-histoquímica. No presente estudo foi possível confirmar a aplicabilidade de que muitos anticorpos produzidos para diagnóstico imuno-histoquímico em patologia humana podem ser utilizados em patologia veterinária. Novos estudos são necessários a fim de se ampliar a lista de aplicabilidade desses anticorpos em diferentes espécies animais, levando sempre em consideração as variações de clones, diluições, métodos de recuperação antigênica e de revelação.
Resumo:
Preface to English edition signed: Alice Hayes.
Resumo:
"PB81-163347."
Resumo:
"References" at end of each chapter except two; "Additional references": p. 203-206.
Resumo:
In Portugal, Veterinary Pathology is developing rapidly, and in recent years we assist to the emergence of private laboratories and the restructuring of universities,polytechnics and public laboratories.The Portuguese Society of Animal Pathology,through its actions and its associates has been keeping the discussion among its peers in order to standardizethe criteria of description,classification and evaluation of cases which are the subject of our daily work.One of the last challenges is associated with the use of routine histochemical techniques and immunohistochemistry, in an effort to establish standardized panels for tumour diagnosis, which could eventually reduce each analysis cost.For this purpose a simple survey was built, in which all collaborators answered questions about the markers used for carcinoma, sarcoma and round cell tumour diagnosis, as well as general questions related with the subject. We obtained twenty-one answered to the questions, from public and private laboratories.In general, in most cases immunohistochemical and histochemical methods are used for diagnosis.The wide spectrum cytokeratins are universally used to confirm carcinoma, and vimentin for sarcoma. The CD3 marker is used by all laboratories to identify T lymphocytes. For the diagnosis of B-cell lymphoma, the marker used is not consensual. In each laboratory there are different markers for more specific situations and only two labs perform PCR techniques for diagnosis. These data will be presented to promote extended discussion,namely to reach a consensus when different markers are used.
Resumo:
This chapter reviews studies on the effects of mycotoxins on embryonic and fetal development, especially those toxins that are global food and feed contaminants. The toxins discussed include aflatoxin produced by Aspergillus flavus and A. parasiticus, ochratoxin which is produced by Aspergillus species particularly A. ochraceus as well as Penicillium verrucosum, ergot alkaloids produced by Claviceps spp., and the Fusarium toxins (fumonisins, deoxynivalenol [vomitoxin], and zearalenone). These toxins have been shown to be teratogenic and/or embryotoxic in different animal bioassays. The implications of toxicity on embryogenesis, and the progress of research on these mycotoxins, are also examined.
Resumo:
Neoplastic diseases are typically diagnosed by biopsy and histopathological evaluation. The pathology report is key in determining prognosis, therapeutic decisions, and overall case management and therefore requires diagnostic accuracy, completeness, and clarity. Successful management relies on collaboration between clinical veterinarians, oncologists, and pathologists. To date there has been no standardized approach or guideline for the submission, trimming, margin evaluation, or reporting of neoplastic biopsy specimens in veterinary medicine. To address this issue, a committee consisting of veterinary pathologists and oncologists was established under the auspices of the American College of Veterinary Pathologists Oncology Committee. These consensus guidelines were subsequently reviewed and endorsed by a large international group of veterinary pathologists. These recommended guidelines are not mandated but rather exist to help clinicians and veterinary pathologists optimally handle neoplastic biopsy samples. Many of these guidelines represent the collective experience of the committee members and consensus group when assessing neoplastic lesions from veterinary patients but have not met the rigors of definitive scientific study and investigation. These questions of technique, analysis, and evaluation should be put through formal scrutiny in rigorous clinical studies in the near future so that more definitive guidelines can be derived.
Resumo:
To determine rates of carriage of fluoroquinolone-resistant Escherichia coli and extraintestinal pathogenic E. coli (ExPEC) among dogs in a specialist referral hospital and to examine the population structure of the isolates. Fluoroquinolone-resistant faecal E. coli isolates (n232, from 23 of 123 dogs) recovered from hospitalized dogs in a veterinary referral centre in Sydney, Australia, over 140 days in 2009 were characterized by phylogenetic grouping, virulence genotyping and random amplified polymorphic DNA (RAPD) analysis. The RAPD dendrogram for representative isolates showed one group B2-associated cluster and three group D-associated clusters; each contained isolates with closely related ExPEC-associated virulence profiles. All group B2 faecal isolates represented the O25b-ST131 clonal group and were closely related to recent canine extraintestinal ST131 clinical isolates from the east coast of Australia by RAPD analysis. Hospitalized dogs may carry fluoroquinolone-resistant ExPEC in their faeces, including those representing O25b-ST131.
Resumo:
Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.
Resumo:
Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.
Resumo:
There is an increasing need for more accurate prognostic and predictive markers in veterinary oncology because of an increasing number of treatment options, the increased financial costs associated with treatment, and the emotional stress experienced by owners in association with the disease and its treatment. Numerous studies have evaluated potential prognostic and predictive markers for veterinary neoplastic diseases, but there are no established guidelines or standards for the conduct and reporting of prognostic studies in veterinary medicine. This lack of standardization has made the evaluation and comparison of studies difficult. Most important, translating these results to clinical applications is problematic. To address this issue, the American College of Veterinary Pathologists' Oncology Committee organized an initiative to establish guidelines for the conduct and reporting of prognostic studies in veterinary oncology. The goal of this initiative is to increase the quality and standardization of veterinary prognostic studies to facilitate independent evaluation, validation, comparison, and implementation of study results. This article represents a consensus statement on the conduct and reporting of prognostic studies in veterinary oncology from veterinary pathologists and oncologists from around the world. These guidelines should be considered a recommendation based on the current state of knowledge in the field, and they will need to be continually reevaluated and revised as the field of veterinary oncology continues to progress. As mentioned, these guidelines were developed through an initiative of the American College of Veterinary Pathologists' Oncology Committee, and they have been reviewed and endorsed by the World Small Animal Veterinary Association.