110 resultados para álcoois
Resumo:
Secondary alcohol concentrations in sugar cane spirits from different origins were determined by gas chromatography. A great variation in the concentration of the secondary alcohols was found in these spirits. Of the 33 brands analyzed, 8 of them were found to be out of conformity with the legislation. Sec butanol, for which the maximum allowed concentration level is 100 mg.L-1 in absolute ethanol, was found within a concentration range between 5 mg.L-1, the limit of quantitation (LQ) and 408 mg.L-1 in absolute ethanol. Sugar cane samples from Salinas, MG, were the only ones that exhibited self similarity because of the low concentrations of n-butanol and n-amylic alcohol (< limit of detection LD).
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Biotecnologia
Resumo:
Some alcohols and diols were oxidized electrocatalytically in a biphasic system using ceriumIV methanesulphonate as mediator. A mixture of methanesulphonic acid solution and benzene was used and aldehydes, ketones and diacids were some of the principal products obtained with yield varying from 27 to 98%. In several cases selectivity was obtained.
Resumo:
The calorimetric experiments based on technique breaking ampoule were carried out by measuring of the heat of solution of alcohol in isotonic solution (NaCl 0.10 M) and alcohol in suspension of Sc at 298 K. From these data the enthalpy of interaction alcohol with suspension of Sc (DtrsH°) was calculate by Hess law. In this study, the results indicate that the enthalpy of interaction of aliphatic alcohol (C2-C8) with suspensions of Sc is a process exothermic and becomes more exothermic with increasing of -CH2 group of alcohol in range -1,14 to -4,0 kJ.mol-1. We concluded that enthalpy of interaction shows a linear relationship with increasing of alcohol's lipophilicity, in agreement with Traube's rule.
Resumo:
Analysis of alcohols, esters and carbonyl compounds were performed using HRGC and HPLC techniques in samples of fusel oils from three different Brazilian alcohol distilleries. High content of isoamyl alcohol (390 g.L-1), isobutyl alcohol (158 g.L-1), ethyl alcohol (28,4 g.L-1), methyl alcohol (16,6 g.L-1) and n-propyl alcohol (11,9 g.L-1) were found. These compounds represent 77 ± 8 % of the approximated weight of a liter of fusel oils. The obtained results show the feasibility of using fusel oils as low-cost raw material for the synthesis of chemicals.
Resumo:
The importance of chiral alcohols as starting materials for the production of fine chemicals and as useful chirons for the building of several interesting molecules or natural products is reported. The useful and common methods of asymmetric reduction such as the chemical (with organoboron or organoaluminum reagents) and the catalytic ones (with ruthenium or rhodium complexes) for preparation of chiral alcohols are described; even the newer and much more rare electrocatalytic methods are reported.
Resumo:
The oxidation of alcohols to obtain ketones, aldehydes or carboxylic acids is a fundamental transformation in organic synthesis and many reagents are known for these conversions. However, there is still a demand for mild and selective reagents for the oxidation of alcohols in the presence of other functional groups. As an alternative, the nitroxyl radical TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) has been demonstrated to be a useful reagent for the transformation of alcohols. The oxidation of alcohols using TEMPO is often efficient, fast, selective, made in mild conditions and can tolerate sensitive functional groups. In this article we report different methodologies using TEMPO in the oxidation of alcohols.
Resumo:
This review reports the determination of absolute configuration of primary and secondary alcohols by ¹H NMR spectroscopy, using the Mosher method. This method consists in the derivatization of an alcohol possessig unknown absolute configuration with one or both enantiomers of an auxiliary reagent. The resulting diastereoisomer spectra are registered and compared, and the chemical shift differences (DdR,S = deltaR - deltaS) are measured. The determination of the absolute configuration of the alcohol molecule is based on the correlation between its chiral center and the auxiliary reagent's chiral center. Therefore, the determination of the absolute configuration depends on aromatic ring shielding effects on the substituents of the alcohol as evidenced by the ¹H NMR spectrum.
Resumo:
Secondary alcohol concentrations in sugar cane spirits from different origins were determined by gas chromatography. A great variation in the concentration of the secondary alcohols was found in these spirits. Of the 33 brands analyzed, 8 of them were found to be out of conformity with the legislation. Sec butanol, for which the maximum allowed concentration level is 100 mg.L-1 in absolute ethanol, was found within a concentration range between 5 mg.L-1, the limit of quantitation (LQ) and 408 mg.L-1 in absolute ethanol. Sugar cane samples from Salinas, MG, were the only ones that exhibited self similarity because of the low concentrations of n-butanol and n-amylic alcohol (< limit of detection LD).
Resumo:
Lipase-catalysed esterifications of alcohols using immobilized enzyme system from sugar cane (Saccharum officinarum) as biocatalyst afforded the corresponding esters in considerable yields (68-93%). Under optimized conditions, the material was utilized for reactions of acetylation with several advantage. It also investigated the possibility of reuse of immobilized enzymes of S. officinarum as biocatalyst under optimal reaction conditions.
Resumo:
The synthesis of chiral acetylenic regioisomers was described by using an appropriate intermediate such as isopropylidene glycerol, a synthon widely used in the enantioselective syntheses. This intermediate was prepared from D-mannitol. The nine obtained compounds have been characterized by their respective spectral data. The mixture of chiral acetylenic alcohols showed activity against Escherichia coli when tested through the monitoring of CO2 released during microbial respiration by using a conductimetric system.
Resumo:
The synthesis and characterization of different platinum nanoparticle/carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm-2 were determined for the oxidation of methanol and ethanol, respectively.
Resumo:
A reação de cicloadição [4+3] entre o furano e o cátion oxialílico, gerado in situ a partir da 2,4-dibromopentan-3-ona, forneceu o 2alfa,4alfa-dimetil-8-oxabiciclo[3.2.1]oct-6-en-3-ona (1). A oxidação catalítica do oxabiciclo 1 com tetróxido de ósmio em presença de peróxido de hidrogênio em excesso levou à formação do acetonídeo 10, a partir do qual foram obtidos os álcoois 2, 11-15, com rendimentos de 23-86%. O tratamento dos álcoois 11-13 com cloreto de tionila, em presença de piridina, resultou nos respectivos alquenos 17 (94%), 18 (89%) e 19 (80%). A atividade herbicida dos compostos foi avaliada sobre o desenvolvimento do sistema radicular de Sorghum bicolor L. e Cucumis sativus L., nas concentrações de 100 e 250 ppm.
Resumo:
Neste trabalho foi estudada a viabilidade da transposição direta de reações de oxidação efetuadas em meio homogêneo ou meio bifásico aquoso para meio bifásico onde líquidos iônicos são empregados como agentes imobilizadores dos catalisadores utilizados. A oxidação de álcoois secundários (ciclopentanol) e de álcoois primários ativados (álcool benzílico) mostrou-se mais efetiva quando 1 mol% de RuCl3 imobilizados no líquido iônico tetrafluoroborato de 1-n-butil-3-metilimidazólio (BMI.BF4), 100 °C de temperatura, 7 atm de oxigênio e 24 horas de reação foram empregados, levando a 61% de conversão, 100% de seletividade em ciclopentanona e freqüência de rotação 2,54 h-1 (com peneira molecular no solvente) e 86% de conversão, 95% de seletividade em benzaldeído e freqüência de rotação 3,58 h-1. Estes resultados são superiores aos obtidos em condições homogêneas. Quando o líquido iônico BMI.BF4 foi substituído por líquidos iônicos fluorados, tais como BMI.OOCCF3 e o novo líquido iônico BMI.OOC(CF2)6CF3 a conversão dobrou e a seletividade se manteve em 100%, nas condições estudadas. A oxidação de olefinas (1-deceno) catalisada por PdCl2/CuCl2/O2 apresentou melhores resultados quando 2 mol% de PdCl2 e 4 mol% de CuCl2 foram imobilizados no líquido iônico BMI.BF4 a 80 °C de temperatura, 6 atm de oxigênio e 16 horas de reação foram empregados, levando a 99% de conversão, 53% de seletividade em 2-decanona e freqüência de rotação 3,09 h-1. Quando o sistema catalítico foi reutilizado a conversão foi de 88% e a seletividade 60%.
Resumo:
Pós-graduação em Química - IQ